966 resultados para Engineering structure
Resumo:
Test templates and a test template framework are introduced as useful concepts in specification-based testing. The framework can be defined using any model-based specification notation and used to derive tests from model-based specifications-in this paper, it is demonstrated using the Z notation. The framework formally defines test data sets and their relation to the operations in a specification and to other test data sets, providing structure to the testing process. Flexibility is preserved, so that many testing strategies can be used. Important application areas of the framework are discussed, including refinement of test data, regression testing, and test oracles.
Resumo:
MCM-41 samples of various pore dimensions are synthesized. Plotting of nitrogen adsorption data at 77 K versus the statistical film thickness (comparison plot) reveals three distinct stages, with a characteristic of two points of inflection. The steep intermediate stage caused by capillary condensation occurred in the highly uniform mesopores. From the slopes of the sections before and after the condensation, the surface area of the mesopores is calculated. The linear portion of the last section is extrapolated to the adsorption axis of the comparison plot, and this intercept is used to obtain the volume of the mesopores. From the surface area and pore volume, average mesopore diameter is calculated, and the value thus obtained is in good agreement with the pore dimension obtained from powder X-ray diffraction measurements. The principle of the calculation as well as problems associated are discussed in detail.
Resumo:
Human follicle stimulating hormone is a pituitary glycoprotein that is essential for the maintenance of ovarian follicle development and testicular spermatogenesis. Like other members of the glycoprotein hormone family, it contains a common a subunit and a hormone specific beta subunit. Each subunit contains two glycosylation sites. The specific structures of the oligosaccharides of human follicle stimulating hormone have been shown to influence both the in vitro and in vivo bioactivity. Since the carbohydrate structure of a protein reflects the glycosylation apparatus of the host cells in which the protein is expressed, we examined the isoform profiles, in vitro bioactivity and metabolic clearance of a preparation of purified recombinant human follicle stimulating hormone derived from a stable, transfected Sp2/0 myeloma cell line, and pituitary human follicle stimulating hormone. Isoelectric focussing and chromatofocussing studies of human follicle stimulating hormone preparations both showed a more basic isoform profile for the recombinant human follicle stimulating hormone compared to that of pituitary human follicle stimulating hormone. The recombinant human follicle stimulating hormone had a significantly higher radioreceptor activity compared to that of pituitary human follicle stimulating hormone, consistent with a greater in vitro potency. Pharmacokinetic studies in rats indicated a similar terminal half life (124 min) to that of the pituitary human follicle stimulating hormone (119 min). Preliminary carbohydrate analysis showed recombinant human follicle stimulating hormone to contain high mannose and/or hybrid type, in addition to complex type carbohydrate chains, terminating with both alpha 2,3 and alpha 2,6 linked sialic acids. These results demonstrate that recombinant human follicle stimulating hormone made in the Sp2/0 myeloma cells is sialylated, has a more basic isoform profile, and has a greater in vitro biological potency compared to those of the pituitary human follicle stimulating hormone.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The synthesis, spectroscopy, and electrochemistry of the acyclic tertiary tetraamine copper(II) complex [CuL(1)](ClO4)(2) (L(1) = N,N-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine) is reported. The X-ray crystal structure of [CuL(1)(OClO3)(2)] reveals a tetragonally elongated CuN4O2 coordination sphere, exhibiting relatively long Cu-N bond lengths for a Cu-II tetraamine, and a small tetrahedral distortion of the CuN4 plane. The [CuL(1)](2+) ion displays a single, reversible, one-electron reduction at -0.06 V vs Ag/AgCl. The results presented herein illustrate the inherent difficulties associated with the separation and characterization of Cu-II complexes of tertiary tetraamines, and some previously incorrect assertions and unexplained observations of other workers are discussed.
Resumo:
Xanthine phosphoribosyltransferase (XPRT; EC 2.4.2.22) from Escherichia coil is a tetrameric enzyme having 152 residues per subunit. XPRT catalyzes the transfer of the phosphoribosyl group from 5-phospho-alpha-D-ribosyl l-pyrophosphate (PRib-PP) to the 6-oxopurine bases guanine, xanthine, and hypoxanthine to form GMP, XMP, and IMP, respectively. Crystals grown in the absence of substrate or product were used to determine the structure of XPRT at a resolution of 1.8 Angstrom by multiple isomorphous replacement. The core structure of XPRT includes a five-stranded parallel B-sheet surrounded by three or-helices, which is similar to that observed in other known phosphoribosyltransferase (PRTase) structures. The XPRT structure also has several interesting features. A glutamine residue in the purine binding site may be responsible for the altered 6-oxopurine base specificity seen in this enzyme compared to other 6-oxopurine PRTases. Also, we observe both a magnesium ion and a sulfate ion bound at the PRib-PP binding site of XPRT. The sulfate ion interacts with Arg-37 which has a cis-peptide conformation, and the magnesium ion interacts with Asp-89, a highly conserved acidic residue in the PRib-PP binding site motif. The XPRT structure also incorporates a feature which has not been observed in other PRTase structures. The C-terminal 12 residues of XPRT adopt an unusual extended conformation and make interactions with a neighboring subunit. The very last residue, Arg-152, could form part of the active site of a symmetry-related subunit in the XPRT tetramer.
Resumo:
The data of nitrogen adsorption on pillared clays (PILC) are converted to comparison plots (t-plots) to derive their pore size distribution (PSD). As in the MP method, the surface area of a group of pores having similar pore sizes is calculated from the slopes of tangent lines at two succeeding points on a comparison plot. By the modified MP method in this work, the tangent line is extrapolated to the adsorption axis on the t-plot, and the difference between intercepts is used to obtain the volume of the group of pores. From the information of surface area and pore volume, the average width of the pore group can be calculated and hence the PSDs of PILCs are obtained by carrying out such calculation procedures from high to low t. With this method, PSDs of several pillared clays are calculated over a wide pore size range, from micropores to mesopores. It is found that the modified MP method could result in the underestimation of the width of ultramicropores due to the enhancement in adsorption energy in these pores. Nevertheless, the method can be very useful in calculating the surface area and pore volume, as well as a mean width of these pores. For super-micropores and mesopores, pore size can also be underestimated, due to deviation of the pore shape from a slit. The principles of the improved MP method, as well as problems associated with it are thoroughly discussed in this paper. In general, this modified method provides practically meaningful results which are consistent with the pore dimension obtained from powder X-ray diffraction measurements, but involves no complicated theoretical treatment or assumptions.
Resumo:
Streptococcus pyogenes infections remain a health problem in several countries due to poststreptococcal sequelae. We developed a vaccine epitope (StreptInCor) composed of 55 amino acids residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. The nuclear magnetic resonance (NMR) structure of the StreptInCor peptide showed that the structure was composed of two microdomains linked by an 18-residue alpha-helix. A chemical stability study of the StreptInCor folding/unfolding process using far-UV circular dichroism showed that the structure was chemically stable with respect to pH and the concentration of urea. The T cell epitope is located in the first microdomain and encompasses 11 out of the 18 alpha-helix residues, whereas the B cell epitope is in the second microdomain and showed no alpha-helical structure. The prediction of StreptInCor epitope binding to different HLA class II molecules was evaluated based on an analysis of the 55 residues and the theoretical possibilities for the processed peptides to fit into the P1, P4, P6, and P9 pockets in the groove of several HLA class II molecules. We observed 7 potential sites along the amino acid sequence of StreptInCor that were capable of recognizing HLA class II molecules (DRB1*, DRB3*, DRB4*, and DRB5*). StreptInCoroverlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules and could be considered as a universal vaccine epitope.
Resumo:
The efficient and correct folding of bacterial disulfide bonded proteins in vivo is dependent upon a class of periplasmic oxidoreductase proteins called DsbA, after the Escherichia coli enzyme. In the pathogenic bacterium Vibrio cholerae, the DsbA homolog (TcpG) is responsible for the folding, maturation and secretion of virulence factors. Mutants in which the tcpg gene has been inactivated are avirulent; they no longer produce functional colonisation pill and they no longer secrete cholera toxin. TcpG is thus a suitable target for inhibitors that could counteract the virulence of this organism, thereby preventing the symptoms of cholera. The crystal structure of oxidized TcpG (refined at a resolution of 2.1 Angstrom) serves as a starting point for the rational design of such inhibitors. As expected, TcpG has the same fold as E. coli DsbA, with which it shares similar to 40% sequence identity. Ln addition, the characteristic surface features of DsbA are present in TcpG, supporting the notion that these features play a functional role. While the overall architecture of TcpG and DsbA is similar and the surface features are retained in TcpG, there are significant differences. For example, the kinked active site helix results from a three-residue loop in DsbA, but is caused by a proline in TcpG (making TcpG more similar to thioredoxin in this respect). Furthermore, the proposed peptide binding groove of TcpG is substantially shortened compared with that of DsbA due to a six-residue deletion. Also, the hydrophobic pocket of TcpG is more shallow and the acidic patch is much less extensive than that of E. coli DsbA. The identification of the structural and surface features that are retained or are divergent in TcpG provides a useful assessment of their functional importance in these protein folding catalysts and is an important prerequisite for the design of TcpG inhibitors. (C) 1997 Academic Press Limited.
Resumo:
Genetic population structure in the catadromous Australian bass Macquaria novemaculeata was investigated using samples from four locations spanning 600 km along the eastern Australian coastline. Both allozymes and mtDNA control region sequences were examined. Population subdivision estimates based on allozymes revealed low levels of population structuring (G(st)=0.043, P<0.05). However, mtDNA indicated moderate levels of geographic population structure (G(st)=0.146, P<0.01). Phylogenetic analysis of mtDNA control region sequences (mean sequence divergence 1.9%) indicated little phylogeographic structuring. Results suggested that genotypic variation within each river population, while bring affected primarily by genetic drift, was also prevented from more significant divergence by homogenizing levels of gene flow-synonymous with a one-dimensional stepping-stone model of population structure. The catadromous life history of Macquaria novemaculeata was considered to br influential on the pattern of population structure displayed. Results were compared to the few population genetic studies involving catadromous fishes, indicating that catadromy alone is unlikely to be a good predictor of population structure. A more comprehensive suite of biological characteristics than simple life-history traits must be considered fully to allow reliable predictive models of population structure to be formulated. (C) 1997 The Fisheries Society of the British Isles.
Resumo:
Background: The venoms of Conus snails contain small, disulfide-rich inhibitors of voltage-dependent sodium channels. Conotoxin GS is a 34-residue polypeptide isolated from Conus geographus that interacts with the extracellular entrance of skeletal muscle sodium channels to prevent sodium ion conduction. Although conotoxin GS binds competitively with mu conotoxin GIIIA to the sodium channel surface, the two toxin types have little sequence identity with one another, and conotoxin GS has a four-loop structural framework rather than the characteristic three-loop mu-conotoxin framework. The structural study of conotoxin GS will form the basis for establishing a structure-activity relationship and understanding its interaction with the pore region of sodium channels. Results: The three-dimensional structure of conotoxin GS was determined using two-dimensional NMR spectroscopy. The protein exhibits a compact fold incorporating a beta hairpin and several turns. An unusual feature of conotoxin GS is the exceptionally high proportion (100%) of cis-imide bond geometry for the three proline or hydroxyproline residues. The structure of conotoxin GS bears little resemblance to the three-loop mu conotoxins, consistent with the low sequence identity between the two toxin types and their different structural framework. However, the tertiary structure and cystine-knot motif formed by the three disulfide bonds is similar to that present in several other polypeptide ion channel inhibitors. Conclusions: This is the first three-dimensional structure of a 'four-loop' sodium channel inhibitor, and it represents a valuable new structural probe for the pore region of voltage-dependent sodium channels. The distribution of amino acid sidechains in the structure creates several polar and charged patches, and comparison with the mu conotoxins provides a basis for determining the binding surface of the conotoxin GS polypeptide.
Resumo:
A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.
Resumo:
Phytophthora cinnamomi isolates collected from 1977 to 1986 and 1991 to 1993 in two regions in South Africa were analyzed using isozymes. A total of 135 isolates was analyzed for 14 enzymes representing 20 putative loci, of which four were polymorphic. This led to the identification of nine different multilocus isozyme genotypes. Both mating types of P. cinnamomi occurred commonly in the Cape region, whereas, predominantly, the A2 mating type occurred in the Mpumalanga region of South Africa. A2 mating type isolates could be resolved into seven multilocus isozyme genotypes, compared with only two multilocus isozyme genotypes for the A1 mating type isolates. Low levels of gene (0.115) and genotypic (2.4%) diversity and a low number of alleles per locus (1.43) were observed for the South African P. cinnamomi population. The genetic distance between the Cape and Mpumalanga P. cinnamomi populations was relatively low (D-m = 0.165), and no specific pattern in regional distribution of multilocus isozyme genotypes could be observed. The genetic distance between the ''old'' (isolated between 1977 and 1986) and ''new'' (isolated between 1991 and 1993) P. cinnamomi populations from the Cape was low (D-m = 0.164), indicating a stable population over time. Three of the nine multilocus isozyme genotypes were specific to the ''old'' population, and only one multilocus isozyme genotype was specific to the ''new'' population. Significant differences in allele frequencies, a high genetic distance (D-m = 0.581) between the Cape A1 and A2 mating type isolates, significant deviations from Hardy-Weinberg equilibrium, a low overall level of heterozygosity, and a high fixation index (0.71) all indicate that sexual reproduction occurs rarely, if at all, in the South African P. cinnamomi population.