936 resultados para Engineering, Electronics and Electrical|Engineering, Mechanical
Resumo:
Ion implantation can be used to confer electrical conductivity upon conventional insulating polymers such as polyetheretherketone (PEEK). We have implanted PEEK films using three different types of ion implantation: conventional inert gas and metal ion implantation, and ion beam mixing. We have applied a number of analytical techniques to compare the chemical, structural and electrical properties of these films. The most effective means of increasing electrical conductivity appears to be via ion beam mixing of metals into the polymer, followed by metal ion implantation and finally, inert gas ion implantation. Our results suggest that in all cases, the conducting region corresponds to the implanted layer in the near surface to a depth of similar to750 Angstrom (ion beam mixed) to similar to5000 Angstrom (metal ion). This latter value is significantly higher than would be expected from a purely ballistic standpoint, and can only be attributed to thermal inter-diffusion. Our data also indicates that graphitic carbon is formed within the implant region by chain scission and subsequent cross-linking. All ion implanted samples retained their bulk mechanical properties, i.e. they remained flexible. The implant layers showed no signs of de-lamination. We believe this to be the first comparative study between different implantation techniques, and our results support the proposition that soft electronic circuitry and devices can be created by conductivity engineering with ion beams. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm(-1) for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10(-20) to 10(-4) S/cm. The storage modulus (G') versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of 'pseudo-solid-like' behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical proper-ties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (T.) and fraction of PE that was crystalline (F-c) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Stickiness behavior of skim milk powder was investigated based on the mechanical property of the material during the glass-rubber transition. A thermally controlled device was developed for the static mechanical test. This device was attached to a texture analyzer, and skim milk powder, which was used as a model sample, was tested for its glass-rubber transition temperature (Tg-r) using static compression technique (creep test). Changes in compression probe distance as a function of temperature were recorded. Tg-r was determined, in the region where changes in the probe distance were observed, by using linear regression technique. The effect of sample quantity, compression force, and heating rate on the determination of Tg-r was investigated. All these parameters significantly influenced the Tg-r determination (p < 0.05). The Tg-r of skim milk powder measured by this novel technique was found closely correlated to its glass transition temperature (T-g) measured by DSC.
Resumo:
Abstract not available.
Resumo:
Stickiness is a common problem encountered in food handling and processing, and also during consumption. Stickiness is observed as adhesion of the food to processing equipment surfaces or cohesion within the food particulate or mass. An important operation where this undesirable behavior of food is manifested is drying. This occurs particularly during drying of high-sugar and high-fat foods. To date, the stickiness of foods during drying or dried powder has been investigated in relation to their viscous and glass transition properties. The importance of contact surface energy of the equipment has been ignored in many analyses, despite the fact that some drying operations have reported using low-energy contact surfaces in drying equipment to avoid the problems caused by stickiness. This review discusses the fundamentals of adhesion and cohesion mechanisms and relates these phenomena to drying and dried products.
Resumo:
This paper presents a finite-difference time-domain (FDTD) simulator for electromagnetic analysis and design applications in MRI. It is intended to be a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The pro-ram has been constructed in an object-oriented framework. The design procedure is detailed and the numerical solver has been verified against analytical solutions for simple cases and also applied to various field calculation problems. In particular, the simulator is demonstrated for inverse RF coil design, optimized source profile generation, and parallel imaging in high-frequency situations. The examples show new developments enabled by the simulator and demonstrate that the proposed FDTD framework can be used to analyze large-scale computational electromagnetic problems in modern MRI engineering. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The published requirements for accurate measurement of heat transfer at the interface between two bodies have been reviewed. A strategy for reliable measurement has been established, based on the depth of the temperature sensors in the medium, on the inverse method parameters and on the time response of the sensors. Sources of both deterministic and stochastic errors have been investigated and a method to evaluate them has been proposed, with the help of a normalisation technique. The key normalisation variables are the duration of the heat input and the maximum heat flux density. An example of application of this technique in the field of high pressure die casting is demonstrated. The normalisation study, coupled with previous determination of the heat input duration, makes it possible to determine the optimum location for the sensors, along with an acceptable sampling rate and the thermocouples critical response-time (as well as eventual filter characteristics). Results from the gauge are used to assess the suitability of the initial design choices. In particular the unavoidable response time of the thermocouples is estimated by comparison with the normalised simulation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Deep-frying, which consists of immersing a wet material in a large volume of hot oil, presents a process easily adaptable to dry rather than cook materials. A suitable material for drying is sewage sludge, which may be dried using recycled cooking oils (RCO) as frying oil. One advantage is that this prepares both materials for convenient disposal by incineration. This study examines fry-drying of municipal sewage sludge using recycled cooking oil. The transport processes occurring during fry-drying were monitored through sample weight, temperature, and image analysis. Due to the thicker and wetter samples than the common fried foods, high residual moisture is observed in the sludge when the boiling front has reached the geometric center of the sample, suggesting that the operation is heat transfer controlled only during the first half of the process followed by the addition of other mechanisms that allow complete drying of the sample. A series of mechanisms comprising four stages (i.e., initial heating accompanied by a surface boiling onset, film vapor regime, transitional nucleate boiling, and bound water removal) is proposed. In order to study the effect of the operating conditions on the fry-drying kinetics, different oil temperatures (from 120 to 180 degrees C), diameter (D = 15 to 25 mm), and initial moisture content of the sample (4.8 and 5.6 kg water(.)kg(-1) total dry solids) were investigated.
Resumo:
In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Solutions of fructose, maltodextrin (DE 5), and their mixtures at the ratios of 20:80, 40:60, 50:50, 60:40, and 80:20 were gelled with 1% agar-agar and dried under convective-conductive drying conditions. The thin slabs were maintained at isothermal drying condition of 30 and 50 degrees C. Yamamoto's simplified method based on regular regime approach was used to calculate the (effective) moisture diffusivity. Both the drying rates and the moisture diffusivity exhibited strong concentration dependence. The concentration dependence was stronger in the case of fructose and fructose rich solutions. Both the moisture diffusivity and drying rates of the mixture solutions were enhanced due to plasticization of fructose on maltodextrin, which is explained through free volume theory.
Resumo:
Turbulent flow around a rotating circular cylinder has numerous applications including wall shear stress and mass-transfer measurement related to the corrosion studies. It is also of interest in the context of flow over convex surfaces where standard turbulence models perform poorly. The main purpose of this paper is to elucidate the basic turbulence mechanism around a rotating cylinder at low Reynolds numbers to provide a better understanding of flow fundamentals. Direct numerical simulation (DNS) has been performed in a reference frame rotating at constant angular velocity with the cylinder. The governing equations are discretized by using a finite-volume method. As for fully developed channel, pipe, and boundary layer flows, a laminar sublayer, buffer layer, and logarithmic outer region were observed. The level of mean velocity is lower in the buffer and outer regions but the logarithmic region still has a slope equal to the inverse of the von Karman constant. Instantaneous flow visualization revealed that the turbulence length scale typically decreases as the Reynolds number increases. Wavelet analysis provided some insight into the dependence of structural characteristics on wave number. The budget of the turbulent kinetic energy was computed and found to be similar to that in plane channel flow as well as in pipe and zero pressure gradient boundary layer flows. Coriolis effects show as an equivalent production for the azimuthal and radial velocity fluctuations leading to their ratio being lowered relative to similar nonrotating boundary layer flows.