959 resultados para Embedded Cell Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new culture model was developed to study the role of proliferation and apoptosis in the etiology of keloids. Fibroblasts were isolated from the superficial, central, and basal regions of six different keloid lesions by using Dulbecco's Modified Eagle Medium containing 10% fetal calf serum as a culture medium. The growth behavior of each fibroblast fraction was examined in short-term and long-term cultures, and the percentage of apoptotic cells was assessed by in situ end labeling of fragmented DNA. The fibroblasts obtained from the superficial and basal regions of keloid tissue showed population doubling times and saturation densities that were similar to those of age-matched normal fibroblasts. In contrast, the fibroblasts from the center of the keloid lesions showed significantly reduced doubling times (25.9 +/- 6.3 hours versus 43.5 +/- 6.3 hours for normal fibroblasts) and reached higher cell densities. In long-term culture, central keloid fibroblasts formed a stratified three-dimensional structure, contracted the self-produced extracellular matrix, and gave rise to nodular cell aggregates, mimicking the formation of keloid tissue. Apoptotic cells were detected in both normal and keloid-derived fibroblasts, but their numbers were twofold higher in normal cells compared with all keloid fibroblasts. To examine whether apoptosis mediates the therapeutic effect of ionizing radiation on keloids, the cells were exposed to gamma rays at a dose of 8 Gy. Under these conditions, a twofold increase in the population of apoptotic cells was detected. These results indicate that the balance between proliferation and apoptosis is impaired in keloid fibroblasts, which could be responsible for the formation of keloid tumors. The results also suggest that keloids contain at least two different fibroblast fractions that vary in growth behavior and extracellular matrix metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chicken represents the best-characterized animal model for B cell development in the so-called gut-associated lymphoid tissue (GALT) and the molecular processes leading to B cell receptor diversification in this species are well investigated. However, the mechanisms regulating B cell development and homeostasis in GALT species are largely unknown. Here we investigate the role played by the avian homologue of B cell-activating factor of the tumor necrosis factor family (BAFF). Flow cytometric analysis showed that the receptor for chicken B cell-activating factor of the tumor necrosis factor family (chBAFF) is expressed by mature and immature B cells. Unlike murine and human BAFF, chBAFF is primarily produced by B cells both in peripheral lymphoid organs and in the bursa of Fabricius, the chicken's unique primary lymphoid organ. In vitro and in vivo studies revealed that chBAFF is required for mature B cell survival. In addition, in vivo neutralization with a decoy receptor led to a reduction of the size and number of B cell follicles in the bursa, demonstrating that, in contrast to humans and mice, in chickens BAFF is also required for the development of immature B cells. Collectively, we show that chBAFF has phylogenetically conserved functions in mature B cell homeostasis but displays unique and thus far unknown properties in the regulation of B cell development in birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUME Introduction: Les cellules T mémoires humaines sont classées en trois sous-populations sur la base de l'expression d'un marqueur de surface cellulaire, CD45RA, et du récepteur aux chimiokines, CCR7. Ces sous-populations, nommées cellules mémoires centrales (TcM), mémoires effectrices (TEM) et mémoires effectrices terminales (ITEM), ont des rôles fonctionnels distincts, ainsi que des capacités de prolifération et de régénération différentes. Cependant, la génération de ces différences reste encore mal comprise et on ignore les mécanismes moléculaires impliqués. Matériaux et Méthodes: Des cellules mononucléaires humaines du sang périphérique ont été séparées par cytométrie de flux selon leur expression de CD4, CD8, CD45RA et CCR7 en sous-populations de cellules CD4+ ou CD8+ naïves, TcM, TEM ou ITEM. Dans chacune de ces sous-populations, 14 gènes impliqués dans l'apoptose, la survie ou la capacité proliférative des cellules T ont été quantifiés par RT-PCR en temps réel, relativement à l'expression d'un gène de référence endogène. L'ARN provenant de 450 cellules T a été utilisé par gène et par sous-population. Les gènes analysés (cibles) comprenaient des gènes de survie (BAFF, APRIL, BAFF-R, BCMA, TACI, IL-15Rα, IL-7Rα), des gènes anti-apoptotiques (Bcl-2, BclxL, FLIP), des gènes pro-apoptotiques (Bad, Bax, Fast) et le gène anti-prolifératif, Tob. A l'aide de la méthode comparative delta-delta-CT, le taux d'expression des gènes cibles de chaque sous-population des cellules T mémoires CD4+ et CD8+, à été comparée à leur taux d'expression dans les cellules T naïves CD4+ et CD8+. Résultats: Dans les cellules CD8+, les gènes pro-apoptotiques Bax et Fast étaient surexprimés dans toutes les sous-populations mémoires, tandis que l'expression des facteurs anti-apoptotiques et de survie comme Bcl-2, APRIL et BAFF-R, étaient diminués. Ces deux tendances étaient particulièrement accentuées dans les sous-groupes des cellules mémoires TEM et TTEM. A noter que malgré le fait que leur expression était également diminuée dans les autres cellules mémoires, le facteur de survie IL-7Ra, était sélectivement surexprimé dans la sous-population de cellules TcM et l'expression d'IL-15Ra était sélectivement augmentée dans les TEM. Dans les cellules CD4+, le taux d'expression des gènes analysés était plus variable entre les sujets étudiés que dans les cellules CD8+, ne permettant pas de définir un profil d'expression spécifique. L'expression du gène de survie BAFF par contre, a été significativement augmentée dans toutes les sous-populations mémoire CD4+. Il en va de même pour l'expression d' APRIL et de BAFF-R, bien que dans moindre degré. A remarquer que l'expression du facteur anti-apoptotique Fast a été observée uniquement dans la souspopulation des TTEM. Discussion et Conclusions: Cette étude montre une nette différence entre les cellules CD8+ et CD4+, en ce qui concerne les profils d'expression des gènes impliqués dans la survie et l'apoptose des cellules T mémoires. Ceci pourrait impliquer une régulation cellulaire homéostatique distincte dans ces deux compartiments de cellules T mémoires. Dans les cellules CD8+ l'expression d'un nombre de gènes impliqués dans la survie et la protection de l'apoptose semblerait être diminuée dans les populations TEM et TTEM en comparaison à celle des sous-populations naïves et TEM, tandis que l'expression des gènes pro-apoptotiques semblerait être augmentée. Comme ceci paraît être plus accentué dans les TTEM, cela pourrait indiquer une plus grande disposition à l'apopotose dans les populations CCR7- (effectrices) et une perte de survie parallèlement à l'acquisition de capacités effectrices. Ceci parlerait en faveur d'un modèle de différentiation linéaire dans les cellules CD8+. De plus, l'augmentation sélective de l'expression d'IL-7Ra observée dans le sous-groupe de cellules mémoires TEM, et d'IL-15Ra dans celui des TEM, pourrait indiquer un moyen de sélection pour des réponses immunitaires mémoires à long terme par une réponse distincte à ces cytokines. Dans les cellules CD4+ par contre, aucun profil d'expression n'a pu être déterminé; les résultats suggèrent même une résistance relative à l'apoptose de la part des cellules mémoires. Ceci pourrait favoriser l'existence d'un modèle de différentiation plus flexible avec des possibilités d'interaction multiples. Ainsi, la surexpression sélective de BAFF, APRIL et BAFF-R dans les sous-populations individuelles des cellules mémoires pourrait être un indice de l'interaction de ces sous-groupes avec des cellules B. ABSTRACT Introduction: Based on their surface expression of the CD45 isoform and of the CCR7 chemokine receptor, memory T cells have been divided into the following three subsets: central memory (TAM), effector memory (TEM) and terminal effector memory (ITEM). Distinct functional roles and different proliferative and regenerative capacities have been attributed to each one of these subpopulations. The molecular mechanisms underlying these differences; however, remain poorly understood. Materials and Methods: According to their expression of CD4, CD8, CD45RA and CCR7, human peripheral blood mononuclear cells were sorted by flow-cytometry into CD4+ or CD8+ naïve, TAM, TEM and ITEM subsets. Using real-time PCR, the expression of 14 genes known to be involved in apoptotis, survival or proliferation of T cells was quantified separately in each individual subset, relative to an endogenous reference gene. The RNA equivalent of 450 T cells was used for each gene and subset. The target gene panel included the survival genes BAFF, APRIL, BAFF-R, BCMA, TACI, IL-15Rα and IL-7Rα, the anti-apoptotic genes Bcl2, Bcl-xL and FLIP, the pro-apoptotic genes Bad, Bax and Fast, as well as the antiproliferative gene Tob. Using the comparative CT-method, the expression of the target genes in the three memory T cell subsets of both CD4+ and CD8+ T cell populations was compared to their expression in the naïve T cells. Results: In CD8+ cells, the pro-apoptotic factors Bax and Fast were found to be upregulated in all memory T cell subsets, whereas the survival and anti-apoptotic factors Bcl-2, APRIL and BAFF-R were downregulated. These tendencies were most accentuated in TEM and TTEM subsets. Even though the survival factor IL-7Rα was also downregulated in these subsets, interestingly, it was selectively upregulated in the CD8+ TAM subset. Similarly, IL-15Rαexpression was shown to be selectively upregulated in the CD8+ TEM subset. In CD4+ cells, the expression levels of the analyzed genes showed a greater inter-individual variability than in CD8+ cells, thus suggesting the absence of any particular expression pattern for CD4+ memory T cells. However, the survival factor BAFF was found to be significantly upregulated in all CD4+ memory T cell subsets, as was also the expression of APRIL and BAFF-R, although to a lesser extent. Furthermore, it was noted that the pro-apoptotic gene Fast was only expressed in the TTEM CD4+ subset. Discussion and Conclusions: Genes involved in apoptosis and survival in human memory T cells have been shown to be expressed differently in CD8+ cells as compared to CD4+ cells, suggesting a distinct regulation of cell homeostasis in these two memory T cell compartments. The present study suggests that, in CD8+ T cells, the expression of various survival and antiapoptotic genes is downregulated in TEM and TTEM subsets, while the expression of proapoptotic genes is upregulated in comparison to the naïve and the TAM populations. These characteristics, potentially translating to a greater susceptibility to apoptosis in the CCR7- (effector) memory populations, are accentuated in the TTEM population, suggesting a loss of survival in parallel to the acquisition of effector capacities. This speaks in favour of a linear differentiation model in CD8+ T memory cells. Moreover, the observed selectively increased expression of IL-7Rα in CD8+ TAM cells - as that of IL-15Rα in CD8+ TEM cells -suggest that differential responsiveness to cytokines could confer a selection bias for distinct long-term memory cell responses. Relative to the results for CD8+ T cells, those for CD4+ T cells seem to indicate a certain resistance of the memory subsets to apoptosis, suggesting the possibility of a more flexible differentiation model with multiple checkpoints and potential interaction of CD4+ memory cells with other cells. Thus, the selective upregulation of BAFF, APRIL and BAFF-R in individual memory subsets could imply an interaction of these subsets with B cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Purpose: NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO119-143 region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO119-143 tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). Experimental Design: We generated tetramers of DRB1*0101 incorporating peptide ESO119-143 using a previously described strategy. We assessed ESO119-143-specific CD4 T cells in peptide-stimulated post-vaccine cultures using the tetramers. We isolated DR1/ESO119-143 tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO119-143 tetramer(+) T cells ex vivo and characterized them phenotypically. Results: Staining of cultures from vaccinated patients with DR1/ESO119-143 tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO123-137 as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO119-143 tetramer(+) cells using T cell receptor (TCR) beta chain variable region (V beta)-specific antibodies, we identified several frequently used V beta. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. Conclusions: The development of DR1/ESO119-143 tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patients

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Drosophila systemic immunity is extensively studied, little is known about the fly's intestine-specific responses to bacterial infection. Global gene expression analysis of Drosophila intestinal tissue to oral infection with the Gram-negative bacterium Erwinia carotovora revealed that immune responses in the gut are regulated by the Imd and JAK-STAT pathways, but not the Toll pathway. Ingestion of bacteria had a dramatic impact on the physiology of the gut that included modulation of stress response and increased stem cell proliferation and epithelial renewal. Our data suggest that gut homeostasis is maintained through a balance between cell damage due to the collateral effects of bacteria killing and epithelial repair by stem cell division. The Drosophila gut provides a powerful model to study the integration of stress and immunity with pathways associated with stem cell control, and this study should prove to be a useful resource for such further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RAPPORT DE SYNTHÈSE : Pip5k3 : Pip5k3 is a kinase responsible for fleck corneal dystrophy when mutated. It is a well conserved gene that has only been characterized in human and mouse. Characterization of pip5k3 in zebrafish was necessary before using it as a model. The protein is 70 % similar to the human homologue. The full coding sequence encompasses 6303 by and presented four isoforms. They were differentially expressed during development. All the analyzed organs of the adult zebrafish expressed pip5k3. The adult eye expressed pip5k3 in the cornea, lens, ganglion cell layer (GCL), inner nuclear layer (INL) and outer limiting membrane (OLM). During development, pip5k3 was first uniformly expressed before to be restricted to the head region and to the somites. The expression of pip5k3 in the cornea of the larval eye could make possible the study of fleck corneal dystrophy on this animal. NkxS-3 : NKXS-3 is a transcription factor responsible for a new oculo-auricular syndrome in human when mutated. This recessive disorder is characterized by defects in ear lobule and multiple defects in eye, including microphthalmia and cataract. During development, the zebrafish expressed nkx5-3 in the lens, in the anterior retina and in otic vesicles. Knockdown experiments partially phenocopied the human disease. Microphthalmia and cataract were reproduced, but zebrafish showed also defects in the cartilage of the jaw associated with a microcephaly and fins abnormalities. The retinal cell differentiation was delayed, possibly linked with the delayed expression of at`h5 and crx also observed in morphants. Shh, a regulator of ath5, was normally expressed in morphant. Overexpression of nkx5-3 lead to an anophthalmia, suggesting a role at the early organogenesis of the eye. All the phenotypes observed in morphants and embryos overexpressing nkx5-3 suggest a potential involvement of the FGF and hedgehog signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The T-cell receptor (TCR) interaction with antigenic peptides (p) presented by the major histocompatibility complex (MHC) molecule is a key determinant of immune response. In addition, TCR-pMHC interactions offer examples of features more generally pertaining to protein-protein recognition: subtle specificity and cross-reactivity. Despite their importance, molecular details determining the TCR-pMHC binding remain unsolved. However, molecular simulation provides the opportunity to investigate some of these aspects. In this study, we perform extensive equilibrium and steered molecular dynamics simulations to study the unbinding of three TCR-pMHC complexes. As a function of the dissociation reaction coordinate, we are able to obtain converged H-bond counts and energy decompositions at different levels of detail, ranging from the full proteins, to separate residues and water molecules, down to single atoms at the interface. Many observed features do not support a previously proposed two-step model for TCR recognition. Our results also provide keys to interpret experimental point-mutation results. We highlight the role of water both in terms of interface resolvation and of water molecules trapped in the bound complex. Importantly, we illustrate how two TCRs with similar reactivity and structures can have essentially different binding strategies. Proteins 2011; © 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Prognosis prediction for resected primary colon cancer is based on the T-stage Node Metastasis (TNM) staging system. We investigated if four well-documented gene expression risk scores can improve patient stratification. METHODS: Microarray-based versions of risk-scores were applied to a large independent cohort of 688 stage II/III tumors from the PETACC-3 trial. Prognostic value for relapse-free survival (RFS), survival after relapse (SAR), and overall survival (OS) was assessed by regression analysis. To assess improvement over a reference, prognostic model was assessed with the area under curve (AUC) of receiver operating characteristic (ROC) curves. All statistical tests were two-sided, except the AUC increase. RESULTS: All four risk scores (RSs) showed a statistically significant association (single-test, P < .0167) with OS or RFS in univariate models, but with HRs below 1.38 per interquartile range. Three scores were predictors of shorter RFS, one of shorter SAR. Each RS could only marginally improve an RFS or OS model with the known factors T-stage, N-stage, and microsatellite instability (MSI) status (AUC gains < 0.025 units). The pairwise interscore discordance was never high (maximal Spearman correlation = 0.563) A combined score showed a trend to higher prognostic value and higher AUC increase for OS (HR = 1.74, 95% confidence interval [CI] = 1.44 to 2.10, P < .001, AUC from 0.6918 to 0.7321) and RFS (HR = 1.56, 95% CI = 1.33 to 1.84, P < .001, AUC from 0.6723 to 0.6945) than any single score. CONCLUSIONS: The four tested gene expression-based risk scores provide prognostic information but contribute only marginally to improving models based on established risk factors. A combination of the risk scores might provide more robust information. Predictors of RFS and SAR might need to be different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ∼1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ∼1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV) infection may be a serious complication related to immunosuppression after solid organ transplantation. Due to their cytotoxicity, T-cells and natural killer (NK) cells target and clear the virus from CMV-infected cells. Although immunosuppressive drugs suppress T-cell proliferation and activation, they do not affect NK cells that are crucial for controlling the infection. The regulation of NK cells depends on a wide range of activating and inhibitory receptors such as the family of killer-cell immunoglobulin-like receptors (KIRs). Several human genetic studies have demonstrated the association of KIR genes with the clearance of infections. Since the respective activities of the different KIR proteins expressed by NK cells during CMV infection have not been extensively studied, we analyzed the expression of KIRs in a cohort of 22 CMV-IgG(+) renal transplant patients at the time of CMV reactivation, after antiviral therapy and 6 months later. Our data revealed a marked expression of KIR3DL1 during the acute phase of the reactivation. We set up an in vitro model in which NK cells, derived either from healthy donors or from transplanted patients, target allogeneic fibroblasts, CMV-infected or uninfected. Our results demonstrate a significant correlation between the lysis of CMV-infected fibroblasts and the expression of KIR3DL1. Blocking experiments with antibodies to MHC-I, to NKG2D and to NKG2C confirmed the importance of KIR3DL1. Consequently, our results suggest that KIR proteins and especially KIR3DL1 could play an important role during CMV-infection or CMV reactivation in immunosuppressed patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vulnerability of subpopulations of retinal neurons delineated by their content of cytoskeletal or calcium-binding proteins was evaluated in the retinas of cynomolgus monkeys in which glaucoma was produced with an argon laser. We quantitatively compared the number of neurons containing either neurofilament (NF) protein, parvalbumin, calbindin or calretinin immunoreactivity in central and peripheral portions of the nasal and temporal quadrants of the retina from glaucomatous and fellow non-glaucomatous eyes. There was no significant difference between the proportion of amacrine, horizontal and bipolar cells labeled with antibodies to the calcium-binding proteins comparing the two eyes. NF triplet immunoreactivity was present in a subpopulation of retinal ganglion cells, many of which, but not all, likely correspond to large ganglion cells that subserve the magnocellular visual pathway. Loss of NF protein-containing retinal ganglion cells was widespread throughout the central (59-77% loss) and peripheral (96-97%) nasal and temporal quadrants and was associated with the loss of NF-immunoreactive optic nerve fibers in the glaucomatous eyes. Comparison of counts of NF-immunoreactive neurons with total cell loss evaluated by Nissl staining indicated that NF protein-immunoreactive cells represent a large proportion of the cells that degenerate in the glaucomatous eyes, particularly in the peripheral regions of the retina. Such data may be useful in determining the cellular basis for sensitivity to this pathologic process and may also be helpful in the design of diagnostic tests that may be sensitive to the loss of the subset of NF-immunoreactive ganglion cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.