643 resultados para Elton-Gruber
Resumo:
While liquid exfoliation is a powerful technique to produce defect-free nanosheets in large quantities, its usefulness is limited by broad nanosheet thickness distributions and low monolayer contents. Here we demonstrate liquid processing techniques, based on iterative centrifugation cascades, which can be designed to achieve either highly efficient nanosheet size-selection and/ or monolayer enrichment. The resultant size-selected dispersions were used to establish quantitative metrics to determine monolayer volume fraction, as well as mean nanosheet size and thickness, from standard spectroscopic measurements. Such metrics allowed us to design and optimize centrifugation cascades to enrich liquid exfoliated WS2 dispersions up to monolayer contents of 75%. Monolayer-rich dispersions show relatively bright photoluminescence with narrow line widths (
Resumo:
Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.
Resumo:
Not Available
Resumo:
Not Available
First-Principles Study of the Electronic and Magnetic Properties of Defects in Carbon Nanostructures
Resumo:
Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.
Resumo:
We present a comprehensive study based on first-principles calculations about the interplay of four important ingredients on the electronic structure of graphene: defects + magnetism + ripples + strain. So far they have not been taken into account simultaneously in a set of ab initio calculations. Furthermore, we focus on the strain dependence of the properties of carbon monovacancies, with special attention to magnetic spin moments. We demonstrated that such defects show a very rich structural and spin phase-diagram with many spin solutions as function of strain. At zero strain the vacancy shows a spin moment of 1.5 Bohrs that increases up to 2 Bohrs with stretching. Changes are more dramatic under compression: the vacancy becomes non-magnetic under a compression larger than 2%. This transition is linked to the structural modifications associated with the formation of ripples in the graphene layer. Our results suggest that such interplay could have important implications for the design of future spintronics devices based on graphene derivatives, as for example a spin-strain switch based on vacancies.
Resumo:
Graphene, due to its exceptional properties, is a promising material for nanotechnology applications. In this context, the ability to tune the properties of graphene-based materials and devices with the incorporation of defects and impurities can be of extraordinary importance. Here we investigate the effect of uniaxial tensile strain on the electronic and magnetic properties of graphene doped with substitutional Ni impurities (Ni_sub). We have found that, although Ni_sub defects are non-magnetic in the relaxed layer, uniaxial strain induces a spin moment in the system. The spin moment increases with the applied strain up to values of 0.3-0.4 \mu_B per Ni_sub, until a critical strain of ~6.5% is reached. At this point, a sharp transition to a high-spin state (~1.9 \mu_B) is observed. This magnetoelastic effect could be utilized to design strain-tunable spin devices based on Ni-doped graphene.
Resumo:
Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.
Resumo:
Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.
Resumo:
Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε) of few-layer graphene and MoS2 is tunable by external electric fields (E ext). We show that at low fields (E ext < 0.01 V/Å) ε assumes a nearly constant value ∼4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered. All these results provide key information about control and understanding of the screening properties in two-dimensional crystals beyond graphene and MoS2
Resumo:
We have fabricated a new van-der-Waals heterostructure composed by BN/graphene/C60. We performed transport measurements on the preliminary BN/graphene device finding a sharp Dirac point at the neutrality point. After the deposition of a C60 thin film by thermal evaporation, we have observed a significant n-doping of the heterostructure. This suggests an unusual electron transfer from C60 into the BN/graphene structure. This BN/graphene/C60 heterostructure can be of interest in photovoltaic applications. It can be used to build devices like p-n junctions, where C60 can be easily deposited in defined regions of a graphene junction by the use of a shadow mask. Our results are contrasted with theoretical calculations.
Resumo:
Mag. phil. Elisabeth Gruber
Resumo:
The pig slaughter process involve different steps that can influence the microbiological quality of carcasses. At this, the understanding of the slaughter process on the microbiological aspects is necessary for the implementation and evaluation of critical control points. The microbiological control of the slaughter process should involve the evaluation of pathogens prevalence and levels of quality and hygiene indicator microorganisms. This study aimed at investigating the influence of steps slaughter process on the microbiological levels of pig carcasses, and evaluate if there is correlation between pathogens (Salmonella spp. and Listeria monocytogenes) and indicators (aerobic mesophilic counts, total coliforms, Escherichia coli and Enterobacteriaceae) microorganisms. A high Salmonella soroprevalence in pigs were founded before the slaughter (57.49 %). While the Salmonella prevalence in carcasses at the initial stage of the slaughter was 26.67 % and in the final stage 1.11 %, L. monocytogenes was detected only in the final washing and cooling steps, with a prevalence of 21.11 and 8.89 %, respectively. The aerobic mesophilic counts, Enterobacteriaceae, total coliforms and E. coli levels in initial steps of slaughter process were 4.25 ± 0.37; 1.25 ± 0.38; 1.10 ± 0.35 and 0.86 ± 0.36, respectively. At the end of slaughter process the results were lower (ranging from 0.16 at 2.70 log CFU/cm2). The step that most reduced microbiological levels was the scalding. The dehairing was a critical step that led to a significant increase of microorganisms levels in the process (p < 0.05). The evisceration not proved to be a critical step on the increase of microbial levels, differently of the final washing, which showed significant increases (p < 0.05) over the levels of aerobic counts, total coliforms, E. coli and enterobacterias (0.30; 0.36; 0.27 and 0.42 log respectively) and Salmonella spp. and L. monocytogenes. The chilling contributes significantly to the reduction of microbiological levels of carcasses, bringing them to levels below the all process stages, with the exception of scalding. No correlation between the hygiene indicator microorganisms used and presence of Salmonella spp. and L. monocytogenes were obtained (p < 0.05). The results show that steps in the process are critical to the sanitary profile, which implies the need to implement actions in the process to reducing the microbiological levels.
Resumo:
O conhecimento de como os mamíferos carnívoros de médio e grande porte Neotropicais capturam e manipulam suas presas é incipiente, e algumas espécies podem somente ser investigadas por análises das fezes, e certos presupostos teóricos sobre forrageo podem ser aplicados e testados a partir da análise da dieta. Lontra longicaudis é um mamífero aquático cuja as fezes podem ser facilmente reconhecidas e coletadas para fornecer informação básica referentes a ecologia de forrageamento da espécie. Com base nessa situação, foram desenvolvidas duas questões relacionadas a dieta, como: (I) Se a 30 composição de presas na dieta varia entre as estações ao longo do ano? E qual o tamanho da magnitude do efeito deste fator? (II) Se a amplitude da dieta varia entre as estações? Nós respondemos estas questões por meio da análise das fezes. Foram realizadas 12 expedições mensais para as coletas, em um trecho de 13 quilômetros do baixo curso do Arroio Grande. Cada fezes foi coletada individualmente, e dados como data e posição geografica anotados. As presas foram classificadas por categorias alimentares (peixes, mamíferos, aves, anfíbios, serpentes, crustaceos e insetos) e em nível de família. A alimentação de L. longicaudis foi a baseada em peixes, com uma amplitude de dieta estreita. As famílias Cichlidae e Callichthyidae predominaram na dieta ao longo do ano. A composição de peixes na dieta variou sazonalmente, porém, a amplitude da dieta não variou. Assim Lontra longicaudis caça presas e mantém certo grau de felxibilidade alimentar ao longo do ano.
Resumo:
A Lontra longicaudis, mamífero semiaquático, que usa corpos d’água doce e salgada e ambientes adjacentes para forrageio, descanso e proteção, ocorre do México ao Uruguai. Devido ao seu hábito esquivo, a maioria dos estudos foi desenvolvida por meio da análise de evidências indiretas (fezes, muco, pegadas, arranhados). Além da distribuição e do “status” populacional, tornam-se essenciais estudos de preferência de hábitat, pois possibilitam a melhor compreensão das necessidades da espécie. Assim, o objetivo deste trabalho foi verificar o uso de hábitat da L. longicaudis, na Planície Costeira do sul do Rio Grande do Sul, Brasil, a partir da análise da frequência dos sinais encontrados, no período de um ano (2012-2013), em relação à disponibilidade dos hábitats (área aberta, árvores esparsas, área construída, árvores solitárias e mata ciliar) e à sazonalidade. Foram encontrados 394 vestígios (88% fezes ou sinais e fezes). Entre os ambientes, a área construída foi usada com maior frequência, apesar da sua baixa disponibilidade. Já, a área aberta, mesmo com a maior disponibilidade, foi menos utilizada. Entre estações, a lontra selecionou distintos hábitats, com maior atividade no inverno e menor no verão no Taim e no Vargas, e maior atividade na primavera e menor no inverno no Marmeleiro. A lontra usou constantemente os hábitats e demonstrou preferência por ambientes que oferecem maior proteção e por locais com barranco, o que evidencia a importância da manutenção da integridade dos ecossistemas regionais para a preservação da espécie.