931 resultados para Electric field enhancement


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light-induced lipophilic porphyrin/aqueous acceptor charge separation across a single lipid-water interface can pump protons across the lipid bilayer when the hydrophobic weak acids, carbonylcyanide m-chlorophenylhydrazone and its p-trifluoromethoxyphenyl analogue, are present. These compounds act as proton carriers across lipid bilayers. In their symmetric presence across the bilayer, the positive currents and voltages produced by the photogeneration of porphyrin cations are replaced by larger negative currents and voltages. The maximum negative current and voltage occur at the pH of maximum dark conductance. The reversed larger current and voltage show a positive ionic charge transport in the same direction as the electron transfer. This transport can form an ion concentration gradient. The movement of protons is verified by an unusual D2O isotope effect that increases the negative ionic current by 2- to 3-fold. These effects suggest that an interfacial pK shift of the weak acid caused by the local electric field of photoformed porphyrin cations/acceptor anions functions as the driving force. The estimated pumping efficiency is 10-30%. Time-resolved results show that proton pumping across the bilayer occurs on the millisecond time scale, similar to that of biological pumps. This light-driven proteinless pump offers a simple model for a prebiological energy transducer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report that fast (mainly 30- to 40-Hz) coherent electric field oscillations appear spontaneously during brain activation, as expressed by electroencephalogram (EEG) rhythms, and they outlast the stimulation of mesopontine cholinergic nuclei in acutely prepared cats. The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively suppressed during the prolonged phase of the slow (<1-Hz) sleep oscillation that is associated with hyperpolarization of cortical neurons. The fast (30- to 40-Hz) rhythms are synchronized intracortically within vertical columns, among closely located cortical foci, and through reciprocal corticothalamic networks. The fast oscillations do not reverse throughout the depth of the cortex. This aspect stands in contrast with the conventional depth profile of evoked potentials and slow sleep oscillations that display opposite polarity at the surface and midlayers. Current-source-density analyses reveal that the fast oscillations are associated with alternating microsinks and microsources across the cortex, while the evoked potentials and the slow oscillation display a massive current sink in midlayers, confined by two sources in superficial and deep layers. The synchronization of fast rhythms and their high amplitudes indicate that the term "EEG desynchronization," used to designate brain-aroused states, is incorrect and should be replaced with the original term, "EEG activation" [Moruzzi, G. & Magoun, H.W. (1949) Electroencephalogr. Clin. Neurophysiol. 1, 455-473].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, we show that mutations of conserved negatively charged residues in S2 and S3 of a brain K+ channel, thought of as countercharges for the positively charged residues in S4, selectively modulate channel gating without modifying the permeation properties. Mutations of Glu235 in S2 that neutralize or reverse charge increase the probability of channel opening and the apparent gating valence. In contrast, replacements of Glu272 by Arg or Thr268 by Asp in S3 decrease the open probability and the apparent gating valence. Residue Glu225 in S2 tolerated replacement only by acidic residues, whereas Asp258 in S3 was intolerant to any attempted change. These results imply that S2 and S3 are unlikely to be involved in channel lining, yet, together with S4, may be additional components of the voltage-sensing structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is devoted to the investigation of inter and intramolecular charge transfer (CT) in molecular functional materials and specifically organic dyes and CT crystals. An integrated approach encompassing quantum-chemical calculations, semiempirical tools, theoretical models and spectroscopic measurements is applied to understand structure-property relationships governing the low-energy physics of these materials. Four main topics were addressed: 1) Spectral properties of organic dyes. Charge-transfer dyes are constituted by electron donor (D) and electron acceptor (A) units linked through bridge(s) to form molecules with different symmetry and dimensionality. Their low-energy physics is governed by the charge resonance between D and A groups and is effectively described by a family of parametric Hamiltonians known as essential-state models. These models account for few electronic states, corresponding to the main resonance structures of the relevant dye, leading to a simple picture that is completed introducing the coupling of the electronic system to molecular vibrations, treated in a non-adiabatic way, and an effective classical coordinate, describing polar solvation. In this work a specific essential-state model was proposed and parametrized for the dye Brilliant Green. The central issue in this work has been the definition of the diabatic states, a not trivial task for a multi-branched chromophore. In a second effort, we have used essential-state models for the description of the early-stage dynamics of excited states after ultrafast excitation. Crucial to this work is the fully non-adiabatic treatment of the coupled electronic and vibrational motion, allowing for a reliable description of the dynamics of systems showing a multistable, broken-symmetry excited state. 2) Mixed-stack CT salts. Mixed-stack (MS) CT crystals are an interesting class of multifunctional molecular materials, where D and A molecules arrange themselves to form stacks, leading to delocalized electrons in one dimension. The interplay between the intermolecular CT, electrostatic interactions, lattice phonons and molecular vibrations leads to intriguing physical properties that include (photoinduced) phase transitions, multistability, antiferromagnetism, ferroelectricity and potential multiferroicity. The standard microscopic model to describe this family of materials is the Modified Hubbard model accounting for electron-phonon coupling (Peierls coupling), electron-molecular vibrations coupling (Holstein coupling) and electrostatic interactions. We adopt and validate a method, based on DFT calculations on dimeric DA structures, to extract relevant model parameters. The approach offers a powerful tool to shed light on the complex physics of MS-CT salts. 3) Charge transfer in organic radical dipolar dyes. In collaboration with the group of Prof. Jaume Veciana (ICMAB- Barcellona), we have studied spectral properties of a special class of CT dyes with D-bridge-A structure where the acceptor group is a stable radical (of the perchlorotriphenylmethyl, PTM, family), leading to an open-shell CT dyes. These materials are of interest since they associate the electronic and optical properties of CT dyes with magnetic properties from the unpaired electron. The first effort was devoted to the parametrization of the relevant essential-state model. Two strategies were adopted, one based on the calculation of the low-energy spectral properties, the other based on the variation of ground state properties with an applied electric field. 4) The spectral properties of organic nanoparticles based on radical species are investigated in collaboration with Dr. I. Ratera (ICMAB- Barcellona). Intriguing spectroscopic behavior was observed pointing to the presence of excimer states. In an attempt to rationalize these findings, extensive calculations (TD-DFT and ZINDO) were performed. The results for the isolated dyes are validated against experimental spectra in solution. To address intermolecular interactions we studied dimeric structures in the gas phase, but the preliminary results obtained do not support excimer formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanomedicine is a new branch of medicine, based on the potentiality and intrinsic properties of nanomaterials. Indeed, the nanomaterials ( i.e. the materials with nano and under micron size) can be suitable to different applications in biomedicine. The nanostructures can be used by taking advantage of their properties (for example superparamagnetic nanoparticles) or functionalized to deliver the drug in a specific target, thanks the ability to cross biological barriers. The size and the shape of 1D-nanostructures (nanotubes and nanowires) have an important role on the cell fate: their morphology plays a key role on the interaction between nanostructure and the biological system. For this reason the 1D nanostructure are interesting for their ability to mime the biological system. An implantable material or device must therefore integrate with the surrounding extracellular matrix (ECM), a complex network of proteins with structural and signaling properties. Innovative techniques allow the generation of complex surface patterns that can resemble the structure of the ECM, such as 1D nanostructures. NWs based on cubic silicon carbide (3C-SiC), either bare (3C-SiC NWs) or surrounded by an amorphous shell (3C-SiC/SiO2 core/shell NWs), and silicon oxycarbide nanowires (SiOxCy NWs) can meet the chemical, mechanical and electrical requirements for tissue engineering and have a strong potential to pave the way for the development of a novel generation of implantable nano-devices. Silicon oxycarbide shows promising physical and chemical properties as elastic modulus, bending strength and hardness, chemical durability superior to conventional silicate glasses in aggressive environments and high temperature stability up to 1300 °C. Moreover, it can easily be engineered through functionalization and decoration with macro-molecules and nanoparticles. Silicon carbide has been extensively studied for applications in harsh conditions, as chemical environment, high electric field and high and low temperature, owing to its high hardness, high thermal conductivity, chemical inertness and high electron mobility. Also, its cubic polytype (3C) is highly biocompatible and hemocompatible, and some prototypes of biomedical applications and biomedical devices have been already realized starting from 3C-SiC thin films. Cubic SiC-based NWs can be used as a biomimetic biomaterial, providing a robust and novel biocompatible biological interface . We cultured in vitro A549 human lung adenocarcinoma epithelial cells and L929 murine fibroblast cells over core/shell SiC/SiO2, SiOxCy and bare 3C-SiC nanowire platforms, and analysed the cytotoxicity, by indirect and direct contact tests, the cell adhesion, and the cell proliferation. These studies showed that all the nanowires are biocompatible according to ISO 10993 standards. We evaluated the blood compatibility through the interaction of the nanowires with platelet rich plasma. The adhesion and activation of platelets on the nanowire bundles, assessed via SEM imaging and soluble P-selectin quantification, indicated that a higher platelet activation is induced by the core/shell structures compared to the bare ones. Further, platelet activation is higher with 3C-SiC/SiO2 NWs and SiOxCyNWs, which therefore appear suitable in view of possible tissue regeneration. On the contrary, bare 3C-SiC NWs show a lower platelet activation and are therefore promising in view of implantable bioelectronics devices, as cardiovascular implantable devices. The NWs properties are suitable to allow the design of a novel subretinal Micro Device (MD). This devices is based on Si NWs and PEDOT:PSS, though the well know principle of the hybrid ordered bulk heterojunction (OBHJ). The aim is to develop a device based on a well-established photovoltaic technology and to adapt this know-how to the prosthetic field. The hybrid OBHJ allows to form a radial p–n junction on a nanowire/organic structure. In addition, the nanowires increase the light absorption by means of light scattering effects: a nanowires based p-n junction increases the light absorption up to the 80%, as previously demonstrated, overcoming the Shockley-Queisser limit of 30 % of a bulk p-n junction. Another interesting employment of these NWs is to design of a SiC based epicardial-interacting patch based on teflon that include SiC nanowires. . Such contact patch can bridge the electric conduction across the cardiac infarct as nanowires can ‘sense’ the direction of the wavefront propagation on the survival cardiac tissue and transmit it to the downstream surivived regions without discontinuity. The SiC NWs are tested in terms of toxicology, biocompatibility and conductance among cardiomyocytes and myofibroblasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study numerically the dynamics of a one-electron wavepacket in a two-dimensional random lattice with long-range correlated diagonal disorder in the presence of a uniform electric field. The time-dependent Schrodinger equation is used for this purpose. We find that the wavepacket displays Bloch-like oscillations associated with the appearance of a phase of delocalized states in the strong correlation regime. The amplitude of oscillations directly reflects the bandwidth of the phase and allows us to measure it. The oscillations reveal two main frequencies whose values are determined by the structure of the underlying potential in the vicinity of the wavepacket maximum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efeitos da polarização eletrostática de eletrodos na periferia de tokamaks têm sido investigados em pequenos tokamaks e mesmo em alguns tokamaks de grande porte. Em geral as experiências são realizadas em condições em que bifurcação do campo elétrico radial é obtida, processo este identificado como modo H de polarização. No Tokamak TCABR, as experiências indicam que o confinamento aumenta para tensões aplicadas até +300 volts, atingindo um máximo de duas vezes o tempo de confinamento do modo L, mas sem bifurcação. Indícios de bifurcação foram notados com +400 V de polarização, mas a descarga termina devido à excitação da atividade MHD, ainda sob investigação. No presente trabalho, a pesquisa é aprofundada com a utilização de uma sonda de Langmuir com 18 pinos dispostos em duas fileiras sob a forma de um ancinho (rake probe) o que permite a medição da temperatura, densidade e flutuação de potencial ao longo do raio menor na periferia do Tokamak. A resolução temporal desse sistema é de cerca de 0,5 ms, para a temperatura, e 5 microssegundos para densidade e potencial flutuante do plasma. Outra sonda eletrostática com 5-pinos na mesma posição radial, mas em diferentes posições poloidal e toroidal foi usada para medições de turbulência e transporte de partículas. Os efeitos da polarização foram investigados e indicam que os níveis de turbulência e transporte começam a diminuir entre +150 e +200 V e para +300 V chegam a atingir uma quase supressão. Nesse mesmo intervalo de tensão a densidade começa a aumentar e para +300 V chega a ser um fator de aproximadamente 2. Quanto ao perfil de temperatura a variação é pouco significativa, mas as incertezas das medidas são maiores. Esses dados são compatíveis com a criação de uma barreira de transporte na região entre o eletrodo em r = 17 cm e o limitador em a = 18 cm. Além disso, o campo elétrico radial mostra forte cisalhamento nessa região. Tomando o início da subida do potencial flutuante como origem de uma escala de tempo, o atraso temporal do início da subida da densidade de elétrons e o atraso do início do decréscimo do transporte de partículas foram medidos. Os resultados são 50 microssegundos para a densidade de elétrons e 60 microssegundos para o transporte de partículas. A questão dos limiares de potência é discutida no texto. Os dados desta experiência indicam que o campo elétrico radial desempenha o papel principal para a melhoria do confinamento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho teve como objetivo estudar os transistores de tunelamento por efeito de campo em estruturas de nanofio (NW-TFET), sendo realizado através de analises com base em explicações teóricas, simulações numéricas e medidas experimentais. A fim de avaliar melhorar o desempenho do NW-TFET, este trabalho utilizou dispositivos com diferentes materiais de fonte, sendo eles: Si, liga SiGe e Ge, além da variação da espessura de HfO2 no material do dielétrico de porta. Com o auxílio de simulações numéricas foram obtidos os diagramas de bandas de energia dos dispositivos NW-TFET com fonte de Si0,73Ge0,27 e foi analisada a influência de cada um dos mecanismos de transporte de portadores para diversas condições de polarização, sendo observado a predominância da influência da recombinação e geração Shockley-Read-Hall (SRH) na corrente de desligamento, do tunelamento induzido por armadilhas (TAT) para baixos valores de tensões de porta (0,5V > VGS > 1,5V) e do tunelamento direto de banda para banda (BTBT) para maiores valores tensões de porta (VGS > 1,5V). A predominância de cada um desses mecanismos de transporte foi posteriormente comprovada com a utilização do método de Arrhenius, sendo este método adotado em todas as análises do trabalho. O comportamento relativamente constante da corrente dos NW-TFETs com a temperatura na região de BTBT tem chamado a atenção e por isso foi realizado o estudo dos parâmetros analógicos em função da temperatura. Este estudo foi realizado comparando a influência dos diferentes materiais de fonte. O uso de Ge na fonte, permitiu a melhora na corrente de tunelamento, devido à sua menor banda proibida, aumentando a corrente de funcionamento (ION) e a transcondutância do dispositivo. Porém, devido à forte dependência de BTBT com o campo elétrico, o uso de Ge na fonte resulta em uma maior degradação da condutância de saída. Entretanto, a redução da espessura de HfO2 no dielétrico de porta resultou no melhor acoplamento eletrostático, também aumentando a corrente de tunelamento, fazendo com que o dispositivo com fonte Ge e menor HfO2 apresentasse melhores resultados analógicos quando comparado ao puramente de Si. O uso de diferentes materiais durante o processo de fabricação induz ao aumento de defeitos nas interfaces do dispositivo. Ao longo deste trabalho foi realizado o estudo da influência da densidade de armadilhas de interface na corrente do dispositivo, demonstrando uma relação direta com o TAT e a formação de uma região de platô nas curvas de IDS x VGS, além de uma forte dependência com a temperatura, aumentando a degradação da corrente para temperaturas mais altas. Além disso, o uso de Ge introduziu maior número de impurezas no óxido, e através do estudo de ruído foi observado que o aumento na densidade de armadilhas no óxido resultou no aumento do ruído flicker em baixa frequência, que para o TFET, ocorre devido ao armadilhamento e desarmadilhamento de elétrons na região do óxido. E mais uma vez, o melhor acoplamento eletrostático devido a redução da espessura de HfO2, resultou na redução desse ruído tornando-se melhor quando comparado à um TFET puramente de Si. Neste trabalho foi proposto um modelo de ruído em baixa frequência para o NW-TFET baseado no modelo para MOSFET. Foram realizadas apenas algumas modificações, e assim, obtendo uma boa concordância com os resultados experimentais na região onde o BTBT é o mecanismo de condução predominante.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum-confined systems are one of the most promising ways to enable us to control a material's interactions with light. Nanorods in particular offer the right dimensions for exploring and manipulating the terahertz region of the spectrum. In this thesis, we model excitons confined inside a nanorod using the envelope function approximation. A region-matching transfer matrix method allows us to simulate excitonic states inside arbitrary heterostructures grown along the length of the rod. We apply the method to colloidal CdSe rods 70 nm in length and under 10 nm in diameter, capped with ligands of DDPA and pyridine. We extend past studies on these types of rods by taking into account their dielectric permittivity mismatch. Compared to previous calculations and experimentally measured terahertz absorption, we predict a higher energy main 1S$z$ to 2P$z$ transition peak. This indicates that the rods are likely larger in diameter than previously thought. We also investigate a nanorod with GaAs/Al$_{0.3}$Ga$_{0.7}$As coupled double dots. The excitonic transitions were found to be manipulable by varying the strength of an applied electric field. We employ quasi-static state population distributions to simulate the effects of exciton relaxation from optically active states to dim ground states. A critical value of the applied field, corresponding to the exciton binding energy of ~18 meV, was found to dramatically alter the terahertz absorption due to state mixing. Above this critical field, more nuanced shifts in transition energies were observed, and gain from radiative relaxation to the ground state is predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One main point of our atmospheric-electric measurements over the Atlantic Ocean 1973 was the investigation of the air-earth current density above the sea. In addition to direct measurements at the water surface with a floating net, we calculated the air-earth current density from the electric field and the air conductivity measured simultaneously on board of the ship and during particular ascents in the free atmosphere. During all five ascents the air-earth current density did not change with altitude. For pure maritime air-conditions, the mean air-earth current density was found to be 2.9 pA/m**2. The mean hourly air-earth current density over the Atlantic shows nearly the same 24-hour pattern as measured by Cobb (1977) at the South Pole at the same time. When dust-loaden air masses of African origin reached the ship as well as under continental influence the mean air-earth current density was reduced to 2.1 pA/m**2. The global 24-hour pattern was modified by this continental influences. Finally, it is shown that the values of the air conductivity measured on board R. V. "Meteor" during our earlier expeditions have been influenced by the exhaust of the ship and must therefore be corrected. With this correction, our new mean values of the air-earth current density over the Atlantic are 2.6 pA/m**2 in 1965 and 2.0 pA/m**2 in 1969. From all measurements, the global air-earth current is estimated to be about 1250 A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of electric pulses to deliver therapeutic molecules to tissues and organs in vivo is a rapidly growing field of research. Electrotransfer can be used to deliver a wide range of potentially therapeutic agents, including drugs, proteins, oligonucleotides, RNA and DNA. Optimization of this approach depends upon a number of parameters such as target organ accessibility, cell turnover, microelectrode design, electric pulsing protocols and the physiological response to the therapeutic agent. Many organs have been successfully transfected by electroporation, including skin, liver, skeletal and cardiac muscle, male and female germ cells, artery, gut, kidney, retinal ganglion cells, cornea, spinal cord, joint synovium and brain. Electrotransfer technology is relevant in a variety of research and clinical settings including cancer therapy, modulation of pathogenic immune reactions, delivery of therapeutic proteins and drugs, and the identification of drug targets by the modulation of normal gene expression. This, together with the capacity to deliver very large DNA constructs, greatly expands the research and clinical applications of in vivo DNA electrotransfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new approach for crosshole radio tomography. Conductivity images of the investigated area are reconstructed from the ratio of the electric field intensities measured at two similar frequencies. The method largely avoids assumptions about the radiation pattern and in-situ intensity of the transmitting antenna, which introduce errors in conventional single-frequency crosshole electromagnetic-absorption tomography. Application of the method to field data achieved an improvement in resolution of anomalies over traditional single-frequency absorption tomography. The dual-frequency method is not a universal approach; it is suitable for moderately conductive media (>0.01 S/m) over the approximate frequency range 1-100 MHz.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ATP and glutamate are fast excitatory neurotransmitters in the central nervous system acting primarily on ionotropic P2X and glutamate [N-methyl-D-aspartate (NMDA) and non-NMDA] receptors, respectively. Both neurotransmitters regulate synaptic plasticity and long-term potentiation in hippocampal neurons. NMDA receptors are responsible primarily for the modulatory action of glutamate, but the mechanism underlying the modulatory effect of ATP remains uncertain. In the present study, the effect of ATP on recombinant NR1a + 2A, NR1a + 2B, and NR1a + 2C NMDA receptors expressed in Xenopus laevis oocytes was investigated. ATP inhibited NR1a + 2A and NR1a + 2B receptor currents evoked by low concentrations of glutamate but potentiated currents evoked by saturating glutamate concentrations. In contrast, ATP potentiated NR1a + 2C receptor currents evoked by nonsaturating glutamate concentrations. ATP shifted the glutamate concentration-response curve to the right, indicating a competitive interaction at the agonist binding site. ATP inhibition and potentiation of glutamate-evoked currents was voltage-independent, indicating that ATP acts outside the membrane electric field. Other nucleotides, including ADP, GTP, CTP, and UTP, inhibited glutamate-evoked currents with different potencies, revealing that the inhibition is dependent on both the phosphate chain and nucleotide ring structure. At high concentrations, glutamate outcompetes ATP at the agonist binding site, revealing a potentiation of the current. This effect must be caused by ATP binding at a separate site, where it acts as a positive allosteric modulator of channel gating. A simple model of the NMDA receptor, with ATP acting both as a competitive antagonist at the glutamate binding site and as a positive allosteric modulator at a separate site, reproduced the main features of the data.