853 resultados para Effective teaching -- Computer network resources
Resumo:
Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
Resumo:
Business networks have been described as cooperative arrangements between independent business organisations that vary from contractual joint ventures to informal exchanges of information. This collaboration has become recognised as an innovative and efficient tool for organising interdependent activities, with benefits accruing to both firms and the local economy. For a number of years, resources have been devoted to supporting Irish networking policies. One recent example of such support is the Irish government's target of €20 million per annum for five years to support the creation of enterprise-led networks. It is imperative that a clear rationale for such interventions is established, as the opportunity cost of public funds is high. This article, therefore, develops an evaluation framework for such networking interventions. This framework will facilitate effective programme planning, implementation and evaluation. It will potentially show how a chain of cause-and-effect at both micro and macro-levels for networking interventions can be established.
Resumo:
The research is concerned with the terminological problems that computer users experience when they try to formulate their knowledge needs and attempt to access information contained in computer manuals or online help systems while building up their knowledge. This is the recognised but unresolved problem of communication between the specialist and the layman. The initial hypothesis was that computer users, through their knowledge of language, have some prior knowledge of the subdomain of computing they are trying to come to terms with, and that language can be a facilitating mechanism, or an obstacle, in the development of that knowledge. Related to this is the supposition that users have a conceptual apparatus based on both theoretical knowledge and experience of the world, and of several domains of special reference related to the environment in which they operate. The theoretical argument was developed by exploring the relationship between knowledge and language, and considering the efficacy of terms as agents of special subject knowledge representation. Having charted in a systematic way the territory of knowledge sources and types, we were able to establish that there are many aspects of knowledge which cannot be represented by terms. This submission is important, as it leads to the realisation that significant elements of knowledge are being disregarded in retrieval systems because they are normally expressed by language elements which do not enjoy the status of terms. Furthermore, we introduced the notion of `linguistic ease of retrieval' as a challenge to more conventional thinking which focuses on retrieval results.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.
Resumo:
The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.
Resumo:
Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
Ensuring the security of corporate information, that is increasingly stored, processed and disseminated using information and communications technologies [ICTs], has become an extremely complex and challenging activity. This is a particularly important concern for knowledge-intensive organisations, such as universities, as the effective conduct of their core teaching and research activities is becoming ever more reliant on the availability, integrity and accuracy of computer-based information resources. One increasingly important mechanism for reducing the occurrence of security breaches, and in so doing, protecting corporate information, is through the formulation and application of a formal information security policy (InSPy). Whilst a great deal has now been written about the importance and role of the information security policy, and approaches to its formulation and dissemination, there is relatively little empirical material that explicitly addresses the structure or content of security policies. The broad aim of the study, reported in this paper, is to fill this gap in the literature by critically examining the structure and content of authentic information security policies, rather than simply making general prescriptions about what they ought to contain. Having established the structure and key features of the reviewed policies, the paper critically explores the underlying conceptualisation of information security embedded in the policies. There are two important conclusions to be drawn from this study: (1) the wide diversity of disparate policies and standards in use is unlikely to foster a coherent approach to security management; and (2) the range of specific issues explicitly covered in university policies is surprisingly low, and reflects a highly techno-centric view of information security management.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Efficiency in the mutual fund (MF), is one of the issues that has attracted many investors in countries with advanced financial market for many years. Due to the need for frequent study of MF's efficiency in short-term periods, investors need a method that not only has high accuracy, but also high speed. Data envelopment analysis (DEA) is proven to be one of the most widely used methods in the measurement of the efficiency and productivity of decision making units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper uses neural network back-ropagation DEA in measurement of mutual funds efficiency and shows the requirements, in the proposed method, for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of a large set of MFs. Copyright © 2014 Inderscience Enterprises Ltd.
Resumo:
The environment of a mobile ad hoc network may vary greatly depending on nodes' mobility, traffic load and resource conditions. In this paper we categorize the environment of an ad hoc network into three main states: an ideal state, wherein the network is relatively stable with sufficient resources; a congested state, wherein some nodes, regions or the network is experiencing congestion; and an energy critical state, wherein the energy capacity of nodes in the network is critically low. Each of these states requires unique routing schemes, but existing ad hoc routing protocols are only effective in one of these states. This implies that when the network enters into any other states, these protocols run into a sub optimal mode, degrading the performance of the network. We propose an Ad hoc Network State Aware Routing Protocol (ANSAR) which conditionally switches between earliest arrival scheme and a joint Load-Energy aware scheme depending on the current state of the network. Comparing to existing schemes, it yields higher efficiency and reliability as shown in our simulation results. © 2007 IEEE.
Resumo:
Introduction-The design of the UK MPharm curriculum is driven by the Royal Pharmaceutical Society of Great Britain (RPSGB) accreditation process and the EU directive (85/432/EEC).[1] Although the RPSGB is informed about teaching activity in UK Schools of Pharmacy (SOPs), there is no database which aggregates information to provide the whole picture of pharmacy education within the UK. The aim of the teaching, learning and assessment study [2] was to document and map current programmes in the 16 established SOPs. Recent developments in programme delivery have resulted in a focus on deep learning (for example, through problem based learning approaches) and on being more student centred and less didactic through lectures. The specific objectives of this part of the study were (a) to quantify the content and modes of delivery of material as described in course documentation and (b) having categorised the range of teaching methods, ask students to rate how important they perceived each one for their own learning (using a three point Likert scale: very important, fairly important or not important). Material and methods-The study design compared three datasets: (1) quantitative course document review, (2) qualitative staff interview and (3) quantitative student self completion survey. All 16 SOPs provided a set of their undergraduate course documentation for the year 2003/4. The documentation variables were entered into Excel tables. A self-completion questionnaire was administered to all year four undergraduates, using a pragmatic mixture of methods, (n=1847) in 15 SOPs within Great Britain. The survey data were analysed (n=741) using SPSS, excluding non-UK students who may have undertaken part of their studies within a non-UK university. Results and discussion-Interviews showed that individual teachers and course module leaders determine the choice of teaching methods used. Content review of the documentary evidence showed that 51% of the taught element of the course was delivered using lectures, 31% using practicals (includes computer aided learning) and 18% small group or interactive teaching. There was high uniformity across the schools for the first three years; variation in the final year was due to the project. The average number of hours per year across 15 schools (data for one school were not available) was: year 1: 408 hours; year 2: 401 hours; year 3: 387 hours; year 4: 401 hours. The survey showed that students perceived lectures to be the most important method of teaching after dispensing or clinical practicals. Taking the very important rating only: 94% (n=694) dispensing or clinical practicals; 75% (n=558) lectures; 52% (n=386) workshops, 50% (n=369) tutorials, 43% (n=318) directed study. Scientific laboratory practices were rated very important by only 31% (n=227). The study shows that teaching of pharmacy to undergraduates in the UK is still essentially didactic through a high proportion of formal lectures and with high levels of staff-student contact. Schools consider lectures still to be the most cost effective means of delivering the core syllabus to large cohorts of students. However, this does limit the scope for any optionality within teaching, the scope for small group work is reduced as is the opportunity to develop multi-professional learning or practice placements. Although novel teaching and learning techniques such as e-learning have expanded considerably over the past decade, schools of pharmacy have concentrated on lectures as the best way of coping with the huge expansion in student numbers. References [1] Council Directive. Concerning the coordination of provisions laid down by law, regulation or administrative action in respect of certain activities in the field of pharmacy. Official Journal of the European Communities 1985;85/432/EEC. [2] Wilson K, Jesson J, Langley C, Clarke L, Hatfield K. MPharm Programmes: Where are we now? Report commissioned by the Pharmacy Practice Research Trust., 2005.
Resumo:
Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.