988 resultados para Eddy-Viscosity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sludges resulting from wastewater treatment processes have a characteristically high water content, which complicates handling operations such as pumping, transport and disposal. To enhance the dewatering of secondary sludge, the effect of ultrasound waves, thermal treatment and chemical conditioning with NaOH have been studied. Two features of treated sludges were examined: their rheological behavior and their dewaterability. The rheological tests consisted of recording shear stress when the shear rate increases and decreases continuously and linearly with time, and when it increases and decreases in steps. Steady-state viscosity and thixotropy were obtained from the rheological tests, and both decreased significantly in all cases with increased treatment intensity. Centrifugation of ultrasonicated and thermally treated sludges allowed the total solid content to be increased by approximately 16.2% and 17.6%, respectively. These dewatered sludges had a lower viscosity and thixotropy than the untreated sludge. In contrast, alkali conditioning barely allowed the sludge to be dewatered by centrifugation, despite decreasing its viscosity and thixotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steady state viscosity and thixotropy of hydrophobically modified hydroxyethyl cellulose HMHEC and nonassociative cellulose water solutions are studied. Although all the samples are shear thinning, only the HMHEC is thixotropic, since the migration of hydrophobes to micelles is controlled by diffusion. The Cross model fits steady state curves. The Mewis model, a phenomenological model that proposes that the rate of change of viscosity when the shear rate is suddenly changed is related to the difference between the steady state and current values of viscosity raised to an exponent, fits structure construction experiments when the exponent, n, is estimated to be around 2. The Newtonian assumption used by Mewis cannot be used here, however. This seems to be related to the fact that the thickening is due to bridged micelle formation, which is a slow process, and also to topological constraints and entanglements, which are rapid processes. The kinetic parameter was redefined to kn in order to make it independent of initial conditions. So, kn depends only on how the shear affects the structure. kn reaches a plateau at shear rates too low to produce structure destruction and decreases at higher shear rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research project was to identify a method of reducing the adverse effect of transverse cracking and to improve the performance of asphalt pavement. The research involved three variations from the contractor's planned operation. Briefly, they were: (1) use of another asphalt cement; (2) saw and seal transverse joints; and (3) increased asphalt cement content. The following conclusions were reached: (1) an improved sealant or sealing procedure is needed if transverse joints are to be used in asphalt pavements; (2) the penetration-viscosity number (PVN) is an effective measure of the temperature susceptibility of asphalt cements; (3) the use of a high temperature susceptible asphalt cement produced severe transverse cracking; (4) the use of asphalt cements with low temperature susceptibility will reduce the frequency of transverse cracking; and (5) an increased asphalt cement content in the asphalt treated base will reduce the frequency of transverse cracking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the asphalt absorption of six Iowa limestones were investigated. It was found that the most important factors that determined the nature, amount, and rate of asphalt absorption are porosity and pore-size distribution of the aggregate, viscosity of the asphalt, and time. Methods needed to determine the realistic maximum and minimum asphalt absorption by aggregates are recommended. Simple methods of asphalt absorption were developed. Since the most important factor that determines the accuracy of asphalt absorption is the bulk specific gravity of aggregates and since the current ASTM method is not adequate in this respect, several new methods were developed. Preliminary treatment studies for the purpose of upgrading absorptive aggregates were conducted using close to 40 chemicals. The improvements of some of these treatments on the mixture properties were demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality granular materials suitable for building all-weather roads are not uniformly distributed throughout the state of Iowa. For this reason the Iowa Highway Research Board has sponsored a number of research programs for the purpose of developing new and effective methods for making use of whatever materials are locally available. This need is ever more pressing today due to the decreasing availability of road funds and quality materials, and the increasing costs of energy and all types of binder materials. In the 1950s, Professor L. H. Csanyi of Iowa State University had demonstrated both in the laboratory and in the field, in Iowa and in a number of foreign countries, the effectiveness of preparing low cost mixes by stabilizing ungraded local aggregates such as gravel, sand and loess with asphalt cements using the foamed asphalt process. In this process controlled foam was produced by introducing saturated steam at about 40 psi into heated asphalt cement at about 25 psi through a specially designed and properly adjusted nozzle. The reduced viscosity and the increased volume and surface energy in the foamed asphalt allowed intimate coating and mixing of cold, wet aggregates or soils. Through the use of asphalt cements in a foamed state, materials normally considered unsuitable could be used in the preparation of mixes for stabilized bases and surfaces for low traffic road construction. By attaching the desired number of foam nozzles, the foamed asphalt can be used in conjunction with any type of mixing plant, either stationary or mobile, batch or continuous, central plant or in-place soil stabilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the hazardous nature of chemical asphalt extraction agents, nuclear gauges have become an increasingly popular method of determining the asphalt content of a bituminous mix. This report details the results of comparisons made between intended, tank stick, extracted, and nuclear asphalt content determinations. A total of 315 sets of comparisons were made on samples that represented 110 individual mix designs and 99 paving projects. All samples were taken from 1987 construction projects. In addition to the comparisons made, seventeen asphalt cement samples were recovered for determination of penetration and viscosity. Results were compared to similar tests performed on the asphalt assurance samples in an attempt to determine the amount of asphalt hardening that can be expected due to the hot mix process. Conclusions of the report are: 1. Compared to the reflux extraction procedure, nuclear asphalt content gauges determine asphalt content of bituminous mixes with much greater accuracy and comparable precision. 2. As a means for determining asphalt content, the nuclear procedure should be used as an alternate to chemical extractions whenever possible. 3. Based on penetration and viscosity results, softer grade asphalts undergo a greater degree 'of hardening due to hot mix processing than do harder grades, and asphalt viscosity changes caused by the mixing process are subject to much more variability than are changes in penetration. 4. Based on changes in penetration and viscosity, the Thin Film Oven Test provides a reasonable means of estimating how much asphalt hardening can be anticipated due to exposure to the hot mix processing environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a combined shape and mechanical anisotropy evolution model for a two-phase inclusion-bearing rock subject to large deformation. A single elliptical inclusion embedded in a homogeneous but anisotropic matrix is used to represent a simplified shape evolution enforced on all inclusions. The mechanical anisotropy develops due to the alignment of elongated inclusions. The effective anisotropy is quantified using the differential effective medium (DEM) approach. The model can be run for any deformation path and an arbitrary viscosity ratio between the inclusion and host phase. We focus on the case of simple shear and weak inclusions. The shape evolution of the representative inclusion is largely insensitive to the anisotropy development and to parameter variations in the studied range. An initial hardening stage is observed up to a shear strain of gamma = 1 irrespective of the inclusion fraction. The hardening is followed by a softening stage related to the developing anisotropy and its progressive rotation toward the shear direction. The traction needed to maintain a constant shear rate exhibits a fivefold drop at gamma = 5 in the limiting case of an inviscid inclusion. Numerical simulations show that our analytical model provides a good approximation to the actual evolution of a two-phase inclusion-host composite. However, the inclusions develop complex sigmoidal shapes resulting in the formation of an S-C fabric. We attribute the observed drop in the effective normal viscosity to this structural development. We study the localization potential in a rock column bearing varying fraction of inclusions. In the inviscid inclusion case, a strain jump from gamma = 3 to gamma = 100 is observed for a change of the inclusion fraction from 20% to 33%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanoparticles developed are based on chitosan, a biocompatible and biodegradable polysaccharide. The chitosan nanoparticles are formed in an entirely water-based process by electrostatic interactions with other biocompatible molecules. As a prerequisite to understand the fate of such nanoparticles in cells, comprehensive characterization and stability studies serve to identify quantitatively the impact of the raw material characteristics and preparation conditions on the nanoparticle characteristics. Methods included H-1 NMR spectroscopy, dilution viscometry, particle size analysis and electron microscopy. Cytotoxicity and cell uptake experiments on RAW 264.7 murine macrophages and p23 murine endothelial cells were performed to investigate the correlation with nanoparticle characteristics and effect of surface decoration with alginate. Cytotoxicity was assessed by the MTT survival test; cell uptake was monitored by fluorescent microscopy using labeled polymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All noncomplying penetration and absolute viscosity results must be verified before being reported. This verification of test results is done by reheating and retesting the identical sample that is suspect. The District Laboratories are required to submit penetration and absolute viscosity correlation samples to the Central Laboratory. These samples are the identical ones tested by the District Laboratories. When the Central laboratory tests these correlation samples they are also considered to be reheated and retested. Reheating a sample will harden the asphalt to some degree and possibly cause a change in the test results. This investigation was conducted to determine how much change in penetration and absolute viscosity could be expected by reheating and retesting asphalt samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the properties imparted to extruded asphalt curb mixes by five different additives. The AC used in these mixes was also tested with various amounts of the additives. All of the additives stiffened the AC as indicated by a reduction of penetration and increased viscosity. Only the powdered asphalts, gilsonite and Witcurb improved the Marshall stability and the indirect tensil strength enough to justify their use in curb mixes.