976 resultados para EPITAXIAL LAYERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.48)O(3) or PbZr(0.2)Ti(0.8)O(3), with large range order and lateral dimensions from 200 nm to 1 micron. METHODS: The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM) and magnetic force microscopy (MFM), respectively. RESULTS: PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. CONCLUSION: These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Early intervention services (EIS) comprise low-stigma, youth-friendly mental health teams for young people undergoing first-episode psychosis (FEP). Engaging with the family of the young person is central to EIS policy and practice. Aims By analysing carers' accounts of their daily lives and affective challenges during a relative's FEP against the background of wider research into EIS, this paper explores relationships between carers' experiences and EIS. Method Semi-structured longitudinal interviews with 80 carers of young people with FEP treated through English EIS. Results Our data suggest that EIS successfully aid carers to support their relatives, particularly through the provision of knowledge about psychosis and medications. However, paradoxical ramifications of these user-focused engagements also emerge; they risk leaving carers' emotions unacknowledged and compounding an existing lack of help-seeking. Conclusions By focusing on EIS's engagements with carers, this paper draws attention to an urgent broader question: as a continuing emphasis on care outside the clinic space places family members at the heart of the care of those with severe mental illness, we ask: who can, and should, support carers, and in what ways?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objectives of this dissertation were: (i) to develop experimental and analytical procedures to quantify different physico-chemical properties of the ultra-thin (~ 100 nm) active layers of reverse osmosis (RO) and nanofiltration (NF) membranes and their interactions with contaminants; (ii) to use such procedures to evaluate the similarities and differences between the active layers of different RO/NF membranes; and (iii) to relate characterization results to membrane performance. Such objectives were motivated by the current limited understanding of the physico-chemical properties of active layers as a result of traditional characterization techniques having limitations associated with the nanometer-scale spatial resolution required to study these ultra-thin films. Functional groups were chosen as the main active layer property of interest. Specific accomplishments of this study include the development of procedures to quantify in active layers as a function of pH: (1) the concentration of both negatively and positively ionized functional groups; (2) the stoichiometry of association between ions (i.e., barium) and ionized functional groups (i.e., carboxylate and sulfonate); and (3) the steric effects experienced by ions (i.e., barium). Conceptual and mathematical models were developed to describe experimental results. The depth heterogeneity of the active layer physico-chemical properties and interactions with contaminants studied in this dissertation was also characterized. Additionally, measured concentrations of ionized functional groups in the polyamide active layers of several commercial RO/NF membranes were used as input in a simplified RO/NF transport model to predict the rejection of a strong electrolyte (i.e., potassium iodide) and a weak acid (i.e., arsenious acid) at different pH values based on rejection results at one pH condition. The good agreement between predicted and experimental results showed that the characterization procedures developed in this study serve as useful tools in the advancement of the understanding of the properties and structure of the active layers of RO/NF membranes, and the mechanisms of contaminant transport through them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce an innovative approach to the simultaneous control of growth mode and magnetotransport properties of manganite thin films, based on an easy-to-implement film/substrate interface engineering. The deposition of a manganite seed layer and the optimization of the substrate temperature allows a persistent bi-dimensional epitaxy and robust ferromagnetic properties at the same time. Structural measurements confirm that in such interface-engineered films, the optimal properties are related to improved epitaxy. A new growth scenario is envisaged, compatible with a shift from heteroepitaxy towards pseudo-homoepitaxy. Relevant growth parameters such as formation energy, roughening temperature, strain profile and chemical states are derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the modification of the commercial TFC-S nanofiltration membrane with shape-persistent dendritic architectures. Amphiphilic aromatic polyamide dendrimers (G1-G3) are synthesized via a divergent approach and used for membrane modification by direct percolation. The permeate samples collected from the percolation experiments are analyzed by UV-Vis spectroscopy to instantly monitor the influence of dendrimer generations on percolation behaviors and new active layer formation. The membrane structures are further characterized by Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM) techniques, suggesting a low-level accumulation of dendrimers inside the TFC-S NF membranes and subsequent formation of an additional aramide dendrimer active layer. Thus, all the modified TFC-S membranes have a double active layer structure. A PES-PVA film is used as a control membrane showing that structural compatibility between the dendrimer and supports plays an important role in the membrane modification process. The performance of modified TFC-S membrane is evaluated on the basis of rejection abilities of a variety of water contaminants having a range of sizes and chemistry. As the water flux is inversely proportional to the thickness of the active layer, we optimize the amount of dendrimers deposited for specific contaminants to improve the solute rejection while maintaining high water flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the achievements and scientific work conducted using a previously designed and fabricated 64 x 64-pixel ion camera with the use of a 0.35 μm CMOS technology. We used an array of Ion Sensitive Field Effect Transistors (ISFETs) to monitor and measure chemical and biochemical reactions in real time. The area of our observation was a 4.2 x 4.3 mm silicon chip while the actual ISFET array covered an area of 715.8 x 715.8 μm consisting of 4096 ISFET pixels in total with a 1 μm separation space among them. The ion sensitive layer, the locus where all reactions took place was a silicon nitride layer, the final top layer of the austriamicrosystems 0.35 μm CMOS technology used. Our final measurements presented an average sensitivity of 30 mV/pH. With the addition of extra layers we were able to monitor a 65 mV voltage difference during our experiments with glucose and hexokinase, whereas a difference of 85 mV was detected for a similar glucose reaction mentioned in literature, and a 55 mV voltage difference while performing photosynthesis experiments with a biofilm made from cyanobacteria, whereas a voltage difference of 33.7 mV was detected as presented in literature for a similar cyanobacterial species using voltamemtric methods for detection. To monitor our experiments PXIe-6358 measurement cards were used and measurements were controlled by LabVIEW software. The chip was packaged and encapsulated using a PGA-100 chip carrier and a two-component commercial epoxy. Printed circuit board (PCB) has also been previously designed to provide interface between the chip and the measurement cards.