989 resultados para ELEMENT COMPOSITION
Resumo:
High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.
Resumo:
Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr = 0.70369 - 0.70503, 206Pb/204Pb = 17.65 - 18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred fiom mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched, EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not "enriched" enough to be the EM II end-member.
Resumo:
Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources. This article is protected by copyright. All rights reserved.
Resumo:
Distribution of rare earth elements (REE) was studied in phosphorites collected from seamounts at depths from about 400 to 3600 m. In general phosphorites are characterized by high REE con¬tent, by a strong negative Ce anomaly, by a slight positive Gd anomaly, and by slight enrichment in heavy REE, which is also characteristic of seawater, where, to certain extent, composition of REE depends on depth. Comparison of REE composition in phosphorites and in seawater from the Northwest Pacific by means of Q-mode factor analysis revealed that REE have been transported into the phosphorites from various water depths following submergence of the seamounts. This corresponds to paleotectonic reconstructions, but is only partially consistent with age determinations of phosphorites.
Resumo:
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions. It is apparent that few of the recovered basalts have the geochemical characteristics of typical "depleted" midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge. Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb, 87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in "MORB". The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an "enriched" and a "depleted" source, but rather a range of sources heterogeneous on different scales for different elements - to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.