783 resultados para Dynamic artificial neural network
Resumo:
Esta tese enfoca o estudo de métodos para compensação de harmônicos em sistemas de energia elétrica e aborda diversos aspectos relacionados à presença de harmônicos nos mesmos, como a apresentação de conceitos e definições em sistemas não-senoidais e estratégias de compensação de potência. Enfatiza-se neste estudo, exemplificado por meio de medições e simulações realizadas, a influência da forma de onda de alimentação sobre cargas não-lineares; a interação harmônica entre a tensão de suprimento e a corrente das cargas, devido à impedância série do sistema; e a influência mútua entre cargas não-lineares em paralelo, como possível forma de atenuação de harmônicos. Para simular e predizer o impacto causado por cargas não-lineares em um sistema, assim como a implementação de ações para mitigar esses impactos, visando à melhoria da qualidade da energia, é necessário o conhecimento das respostas das mesmas. Como produto do presente trabalho, destacam-se as técnicas desenvolvidas para a modelagem de cargas nãolineares sob diferentes condições de alimentação, em especial o uso de técnicas de inteligência computacional, como o sistema neuro-fuzzy e as redes neurais artificiais; assim como o emprego da série de Volterra para predição do comportamento das cargas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Historicamente, o processo de formação das populações da Amazônia, assim como de todo território brasileiro, envolveu três grupos étnicos principais: o ameríndio, o europeu e o africano. Como conseqüência, estas populações possuem em geral constituição miscigenada do ponto de vista social e biológico. Desde o final do século passado, estudos do DNA mitocondrial (mtDNA) tem sido desenvolvidos com o propósito de estimar a mistura interétnica presente nestas populações. Para isto, é de fundamental importância a classificação de uma determinada linhagem de mtDNA em um dos mais de 250 haplogrupos/subclados propostos na literatura. Com o objetivo de desenvolver um sistema automatizado, preciso e acurado de classificação de seqüências (linhagens) de mtDNA, o presente trabalhou lançou mão da técnica de Redes Neurais Artificiais (RNA’s) tendo como base os estudos de filogeografia. Para esta classificação, foram desenvolvidas quatro redes neurais artificiais diretas, com múltiplas camadas e algoritmo de aprendizagem de retropropagação. As entradas de cada rede equivalem às posições nucleotídicas polimórficas da região hipervariável do DNA mitocondrial, as quais retornam como saída a classificação específica de cada linhagem. Posterior ao treinamento, todas as redes apresentaram índices de acerto de 100%, demonstrando que a técnica de Rede Neural Artificial pode ser utilizada, com êxito, na classificação de padrões filogeográficos com base no DNA mitocondrial.
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The invention described is a method for determining embryo viability and quality that makes a quick evaluation possible, with minimal interference in the development of the embryo, using a microscopy system associated with digital image capture, providing a set of values for each embryo which represents to what extent the embryo can be considered to belong to each of the four possible grades, using artificial neural network technology, with objectivity and reproducibility.
Aplicação de redes NeuroFuzzy ao processamento de peças automotivas por meio de injeção de polímeros
Resumo:
The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify these parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS