946 resultados para Drosophila Spermatogenesis
Resumo:
Despite the benefits of resistance, susceptibility to infectious disease is commonplace. Although specific susceptibility may be considered an inevitable consequence of the co-evolutionary arms race between parasite and host, a more general constraint may arise from the cost of an immune response. This “cost” hypothesis predicts a tradeoff between immune defense and other components of fitness. In particular, a tradeoff between immunity and sexually selected male behavior has been proposed. Here we provide experimental support for the direct phenotypic tradeoff between sexual activity and immunity by studying the antibacterial immune response in Drosophila melanogaster. Males exposed to more females showed a reduced ability to clear a bacterial infection, an effect that we experimentally link to changes in sexual activity. Our results suggest immunosuppression is an important cost of reproduction and that immune function and levels of disease susceptibility will be influenced by sexual selection.
Resumo:
Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.
Resumo:
Signaling through the Toll receptor is required for dorsal/ventral polarity in Drosophila embryos, and also plays an evolutionarily conserved role in the immune response. Upon ligand binding, Toll appears to multimerize and activate the associated kinase, Pelle. However, the immediate downstream targets of Pelle have not been identified. Here we show that Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2), a homologue of human TRAF6, physically and functionally interacts with Pelle, and is phosphorylated by Pelle in vitro. Importantly, dTRAF2 and Pelle cooperate to activate Dorsal synergistically in cotransfected Schneider cells. Deletion of the C-terminal TRAF domain of dTRAF2 enhances Dorsal activation, perhaps reflecting the much stronger interaction of the mutant protein with phosphorylated, active Pelle. Taken together, our results indicate that Pelle and dTRAF2 physically and functionally interact, and that the TRAF domain acts as a regulator of this interaction. dTRAF2 thus appears to be a downstream target of Pelle. We discuss these results in the context of Toll signaling in flies and mammals.
Resumo:
Rapid divergence in postmating-prezygotic characters suggests that selection may be responsible for generating reproductive barriers between closely related species. Theoretical models indicate that this rapid divergence could be generated by a series of male adaptations and female counteradaptations by means of sexual selection or conflict, but empirical tests of particular mechanisms are generally lacking. Moreover, although a male–female genotypic interaction in mediating sperm competition attests to an active role of females, molecular or morphological evidence of the female's participation in the coevolutionary process is critically needed. Here we show that postmating-prezygotic variation among populations of cactophilic desert Drosophila reflects divergent coevolutionary trajectories between the sexes. We explicitly test the female's role in intersexual interactions by quantifying differences in a specific postmating-prezygotic reproductive character, the insemination reaction mass, in two species, Drosophila mojavensis and Drosophila arizonae. A series of interpopulation crosses confirmed that population divergence was propelled by male–female interactions, a prerequisite if the selective forces derive from sexual conflicts. An association between the reaction mass and remating and oviposition behavior argues that divergence has been propelled by sexually antagonistic coevolution, and potentially has important implications for speciation.
Resumo:
DGq is the alpha subunit of the heterotrimeric GTPase (G alpha), which couples rhodopsin to phospholipase C in Drosophila vision. We have uncovered three duplicated exons in dgq by scanning the GenBank data base for unrecognized coding sequences. These alternative exons encode sites involved in GTPase activity and G beta-binding, NorpA (phospholipase C)-binding, and rhodopsin-binding. We examined the in vivo splicing of dgq in adult flies and find that, in all but the male gonads, only two isoforms are expressed. One, dgqA, is the original visual isoform and is expressed in eyes, ocelli, brain, and male gonads. The other, dgqB, has the three novel exons and is widely expressed. Remarkably, all three nonvisual B exons are highly similar (82% identity at the amino acid level) to the Gq alpha family consensus, from Caenorhabditis elegans to human, but all three visual A exons are divergent (61% identity). Intriguingly, we have found a third isoform, dgqC, which is specifically and abundantly expressed in male gonads, and shares the divergent rhodopsin-binding exon of dgqA. We suggest that DGqC is a candidate for the light-signal transducer of a testes-autonomous photosensory clock. This proposal is supported by the finding that rhodopsin 2 and arrestin 1, two photoreceptor-cell-specific genes, are also expressed in male gonads.
Resumo:
In insects, neurotransmitter catabolism, melatonin precursor formation, and sclerotization involve arylalkylamine N-acetyltransferase (aaNAT, EC 2.3.1.87) activity. It is not known if one or multiple aaNAT enzymes are responsible for these activities. We recently have purified an aaNAT from Drosophila melanogaster. Here, we report the cloning of the corresponding aaNAT cDNA (aaNAT1) that upon COS cell expression acetylates dopamine, tryptamine, and the immediate melatonin precursor serotonin. aaNAT1 represents a novel gene family unrelated to known acetyl-transferases, except in two weakly conserved amino acid motifs. In situ hybridization studies of aaNAT1 mRNA in embryos reveal hybridization signals in the brain, the ventral cord, the gut, and probably in oenocytes, indicating a broad tissue distribution of aaNAT1 transcripts. Moreover, in day/ night studies we demonstrate a diurnal rhythm of melatonin concentration without a clear-cut change in aaNAT1 mRNA levels. The data suggest that tissue-specific regulation of aaNAT1 may be associated with different enzymatic functions and do not exclude the possibility of additional aaNAT genes.
Resumo:
Genetic screens in Drosophila have lead to the discovery of many genes important for patterning and signal transduction in diverse organisms. Traditionally, the phenotypic effects of loss-of-function mutations are analyzed. As an alternative way to link genes and function, I have developed a versatile misexpression screen in Drosophila, the first such screen in higher eukaryotes. The screen identifies genes that, when over- or misexpressed in a pattern of interest, give a specific phenotype or modulate an existing mutant phenotype. It is based on Gal4 transactivation of a mobile enhancer and promoter that "targets" random endogenous genes for expression. The modular design of the screen allows directed expression in any temporal or spatial pattern. When activated in the developing eye, 4% of target inserts gave dominant phenotypes. One insertion was in the gene encoding Ras GTPase-activating protein; its overexpression phenotype was strongly enhanced by a mutation in Ras1. Thus, biologically relevant phenotypes and genetic interactions are identified using this method. The screen is a powerful new tool for developmental genetics; similar approaches can also be developed for other organisms.
Resumo:
In metamorphosing wing discs, progression through the cell cycle takes place, as in larval discs, in nonclonally derived clusters of cells synchronized in the same cell cycle stage. Contrary to early discs, there are temporal and spatial heterogeneities in cell proliferation associated with wing margin, vein, intervein, and middle intervein territories. Within these territories, there are no indications of a wave progression of the cell cycle. Mitotic orientations are, as in early discs, at random but there is a preferential allocation of postmitotic cells along the proximodistal axis, thus explaining the elongated shape of the resulting clones along this axis. Shapes of clones in mature discs and in evaginated wings are similar, thus excluding major morphogenetic movements during evagination. After the proliferative period, all the cells are arrested in G1 phase. The final number of cells of the wing is fixed independently of experimental perturbations that alter the cell division schedule. These results are discussed in the context of a model of wing morphogenesis.
Resumo:
Male mating success is an important fitness component in Drosophila. The seminal fluid conveyed with the sperm inhibits the proclivity of the female to remate and reduces her fitness. Nevertheless, females may remate before they have exhausted the sperm from the first male and consequently use sperm from both males. We have studied concurrent multiple paternity (CMP) in two Drosophila melanogaster populations, from an apple orchard and a vineyard just after harvest. CMP is high in both populations, somewhat greater than 50%; but it is not significantly higher in the vineyard, where the population density is much greater than in the orchard. Population density had been thought to be an important determinant of CMP incidence. We have used four gene loci coding for enzymes as independent markers for detecting CMP.
Resumo:
Specification of unequal daughter cell fates in the Drosophila external sense organ lineage requires asymmetric localization of the intrinsic determinant Numb as well as cell-cell interactions mediated by the Delta ligand and Notch receptor. Previous genetic studies indicated that numb acts upstream of Notch, and biochemical studies revealed that Numb can bind Notch. For a functional assay of the action of Numb on Notch signaling, we expressed these proteins in cultured Drosophila cells and used nuclear translocation of Suppressor of Hairless [Su(H)] as a reporter for Notch activity. We found that Numb interfered with the ability of Notch to cause nuclear translocation of Su(H); both the C-terminal half of the phosphotyrosine binding domain and the C terminus of Numb are required to inhibit Notch. Overexpression of Numb during wing development, which is sensitive to Notch dosage, revealed that Numb is also able to inhibit the Notch receptor in vivo. In the external sense organ lineage, the phosphotyrosine binding domain of Numb was found to be essential for the function but not for asymmetric localization of Numb. Our results suggest that Numb determines daughter cell fates in the external sense organ lineage by inhibiting Notch signaling.
Resumo:
The protein p70s6k/p85s6k lies on a mitogen-stimulated signaling pathway and plays a key role in G1 progression of the cell cycle. Activation of this enzyme is mediated by a complex set of phosphorylation events, which has largely contributed to the difficulty in identifying the upstream kinases that mediate p70s6k activation. Genetics has proved a powerful complementary approach for such problems, providing an alternative means to identify components of signaling cascades and their functional end targets. As a first step toward implementing such an approach, we have cloned cDNAs encoding the Drosophila melanogaster p70s6k homolog (Dp70s6k). Dp70s6k is encoded by a single gene, which generates three mRNA transcripts and exhibits an overall identity of 78% in the catalytic domain with its mammalian counterpart. Importantly, this high identity extends beyond the catalytic domain to the N terminus, linker region, and the autoinhibitory domain. Furthermore, all the critical phosphorylation sites required for mammalian p70s6k activation are conserved within these same domains of Dp70s6k. Chief amongst these conserved sites are those associated with the selective rapamycin-induced p70s6k dephosphorylation and inactivation. Consistent with this observation, analysis of total S6 kinase activity in fractionated Drosophila Schneider line 2 cell extracts reveals two peaks of activity, only one of which is rapamycin sensitive. By employing a monospecific polyclonal antibody generated against Dp70s6k, we show that the cloned DP70s6k cDNA has identity with only the rapamycin sensitive peak, suggesting that this biological system would be useful in determining not only the mechanism of p70s6k activation, but also in elucidating the mechanism by which rapamycin acts to inhibit cell growth.
Resumo:
Two zygotic genes, twist and snail, are indispensable for the correct establishment of the mesoderm primordium in the early Drosophila embryo. They are also needed for morphogenesis and differentiation of the mesoderm. Both genes code for transcription factors with different, albeit complementary, functions. Therefore, to understand the early development of the mesoderm, it will be necessary to identify and study the genes regulated by twist and snail. We have searched for downstream genes using a subtractive cDNA library enriched in sequences expressed in the mesoderm. We have isolated sequences that correspond to 13 novel early mesoderm genes. These novel genes show a variety of expression patterns and also differ in their dependence on twist and snail functions. This indicates that the regulation of early gene activity in the mesoderm is more complex than previously thought.
Resumo:
The essential eukaryotic pre-mRNA splicing factor U2AF (U2 small nuclear ribonucleoprotein auxiliary factor) is required to specify the 3' splice at an early step in spliceosome assembly. U2AF binds site-specifically to the intron polypyrimidine tract and recruits U2 small nuclear ribonucleoprotein to the branch site. Human U2AF (hU2AF) is a heterodimer composed of a large (hU2AF65) and small (hU2AF35) subunit. Although these proteins associate in a tight complex, the biochemical requirement for U2AF activity can be satisfied solely by the large subunit. The requirement for the small subunit in splicing has remained enigmatic. No biochemical activity has been found for hU2AF35 and it has been implicated in splicing only indirectly by its interaction with known splicing factors. In the absence of a biochemical assay, we have taken a genetic approach to investigate the function of the small subunit in the fruit fly Drosophila melanogaster. A cDNA clone encoding the small subunit of Drosophila U2AF (dU2AF38) has been isolated and sequenced. The dU2AF38 protein is highly homologous to hU2AF35 containing a conserved central arginine- and serine-rich (RS) domain. A recessive P-element insertion mutation affecting dU2AF38 causes a reduction in viability and fertility and morphological bristle defects. Consistent with a general role in splicing, a null allele of dU2AF38 is fully penetrant recessive lethal, like null alleles of the Drosophila U2AF large subunit.
Resumo:
NF-kappa B/Rel transcription factors are central regulators of mammalian immunity and are also implicated in the induction of cecropins and other antibacterial peptides in insects. We identified the gene for Relish, a compound Drosophila protein that, like mammalian p105 and p100, contains both a Rel homology domain and an I kappa B-like domain. Relish is strongly induced in infected flies, and it can activate transcription from the Cecropin A1 promoter. A Relish transcript is also detected in early embryos, suggesting that it acts in both immunity and embryogenesis. The presence of a compound Rel protein in Drosophila indicates that similar proteins were likely present in primordial immune systems and may serve unique signaling functions.
Resumo:
The neural pathway that governs an escape response of Drosophila to sudden changes in light intensity can be artificially induced by electrical stimulation of the brain and monitored by electrical recording from the effector muscles. We have refined previous work in this system to permit reliable ascertainment of two kinds of response: (i) a short-latency response that follows from direct excitation of a giant fiber neuron in the interior of the fly brain and (ii) a long-latency response in which electrical stimulation triggers neurons in the optic ganglia that ultimately impinge on the giant fiber neuron. The general anesthetic halothane is reported here to have very different potencies in inhibiting these two responses. The long-latency response is obliterated at concentrations similar to those that cause gross behavioral effects in adult flies, whereas the short-latency response is only partially inhibited at doses that are 10-fold higher. Three other volatile anesthetic agents show a similar pattern. Thus, as in higher organisms, the Drosophila nervous system is differentiated into components of high and low sensitivity to general anesthetics. Moreover, this work shows that one of the sensitive components of the nervous system lies in the optic lobe and is readily assayed by its effect on downstream systems; it should provide a focus for exploring the effects of genetic alteration of anesthetic sensitivity.