721 resultados para Dissection


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed restriction fragment length polymorphism map was used to determine the chromosomal locations and subgenomic distributions of quantitative trait loci (QTLs) segregating in a cross between cultivars of allotetraploid (AADD) Gossypium hirsutum (“Upland” cotton) and Gossypium barbadense (“Sea Island,” “Pima,” or “Egyptian” cotton) that differ markedly in the quality and quantity of seed epidermal fibers. Most QTLs influencing fiber quality and yield are located on the “D” subgenome, derived from an ancestor that does not produce spinnable fibers. D subgenome QTLs may partly account for the fact that domestication and breeding of tetraploid cottons has resulted in fiber yield and quality levels superior to those achieved by parallel improvement of “A” genome diploid cottons. The merger of two genomes with different evolutionary histories in a common nucleus appears to offer unique avenues for phenotypic response to selection. This may partly compensate for reduction in quantitative variation associated with polyploid formation and be one basis for the prominence of polyploids among extant angiosperms. These findings impel molecular dissection of the roles of divergent subgenomes in quantitative inheritance in many other polyploids and further exploration of both “synthetic” polyploids and exotic diploid genotypes for agriculturally useful variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reassembly of enzymes from peptide fragments has been used as a strategy for understanding the evolution, folding, and role of individual subdomains in catalysis and regulation of activity. We demonstrate an oligomerization-assisted enzyme reassembly strategy whereby fragments are covalently linked to independently folding and interacting domains whose interactions serve to promote efficient refolding and complementation of fragments, forming active enzyme. We show that active murine dihydrofolate reductase (E.C. 1.5.1.3) can be reassembled from complementary N- and C-terminal fragments when fused to homodimerizing GCN4 leucine zipper-forming sequences as well as heterodimerizing protein partners. Reassembly is detected by an in vivo selection assay in Escherichia coli and in vitro. The effects of mutations that disrupt fragment affinity or enzyme activity were assessed. The steady–state kinetic parameters for the reassembled mutant (Phe-31 → Ser) were determined; they are not significantly different from the full-length mutant. The strategy described here provides a general approach for protein dissection and domain swapping studies, with the capacity both for rapid in vivo screening as well as in vitro characterization. Further, the strategy suggests a simple in vivo enzyme-based detection system for protein–protein interactions, which we illustrate with two examples: ras–GTPase and raf–ras-binding domain and FK506-binding protein-rapamycin complexed with the target of rapamycin TOR2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adenovirus (Ad) genome contains immunoregulatory and cytokine inhibitory genes that are presumed to function in facilitating acute infection or in establishing persistence in vivo. Some of these genes are clustered in early region 3 (E3), which contains a 19-kDa glycoprotein (gp19) that inhibits the transport of selected class I major histocompatibility complex (MHC) molecules out of the endoplasmic reticulum. In addition, the E3 region contains three protein inhibitors of the cytolytic function of tumor necrosis factor α (TNF-α). Because type I autoimmune diabetes destroys islets by mechanisms that involve class I MHC and TNF-α, we investigated whether the entire cassette of Ad E3 genes might prevent the onset of diabetes in a well studied lymphocytic choriomeningitis viral (LCMV) murine model of virus-induced autoimmune diabetes. In this model, a LCMV polypeptide (either glycoprotein or nucleoprotein) expressed as a transgene in the islets is a target for autoimmune destruction of β cells after LCMV infection. In this scenario the LCMV-induced immune response is directed not only against the virus but also against the LCMV transgenes expressed in the β cells. Our experiments demonstrated a very efficient prevention of this LCMV-triggered diabetes by the Ad E3 genes. This resulted from the inhibition of target cell recognition by a fully competent and LCMV-primed immune system. Unlike the results from the β-2 microglobulin gene deletion experiments, our approach shows that selective regulation at the level of the target cell is sufficient to prevent autoimmune diabetes without disrupting the function of the systemic immune response. Although the Ad genes in these experiments were provided as transgenes, recent experiments may permit the introduction of such genes through the use of viral vectors. Although the decrease in class I MHC in islets by Ad genes was demonstrated in these in vivo studies, the relative importance of this process and the control of TNF-α cytolysis must await further genetic dissection of the introduced Ad genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ALL-1 gene positioned at 11q23 is directly involved in human acute leukemia either through a variety of chromosome translocations or by partial tandem duplications. ALL-1 is the human homologue of Drosophila trithorax which plays a critical role in maintaining proper spatial and temporal expression of the Antennapedia-bithorax homeotic genes determining the fruit fly’s body pattern. Utilizing specific antibodies, we found that the ALL-1 protein distributes in cultured cells in a nuclear punctate pattern. Several chimeric ALL-1 proteins encoded by products of the chromosome translocations and expressed in transfected cells showed similar speckles. Dissection of the ALL-1 protein identified within its ≈1,100 N-terminal residues three polypeptides directing nuclear localization and at least two main domains conferring distribution in dots. The latter spanned two short sequences conserved with TRITHORAX. Enforced nuclear expression of other domains of ALL-1, such as the PHD (zinc) fingers and the SET motif, resulted in uniform nonpunctate patterns. This indicates that positioning of the ALL-1 protein in subnuclear structures is mediated via interactions of ALL-1 N-terminal elements. We suggest that the speckles represent protein complexes which contain multiple copies of the ALL-1 protein and are positioned at ALL-1 target sites on the chromatin. Therefore, the role of the N-terminal portion of ALL-1 is to direct the protein to its target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The function of repressor activator protein 1 (Rap1p) at glycolytic enzyme gene upstream activating sequence (UAS) elements in Saccharomyces cerevisiae is to facilitate binding of glycolysis regulatory protein 1 (Gcr1p) at adjacent sites. Rap1p has a modular domain structure. In its amino terminus there is an asymmetric DNA-bending domain, which is distinct from its DNA-binding domain, which resides in the middle of the protein. In the carboxyl terminus of Rap1p lie its silencing and putative activation domains. We carried out a molecular dissection of Rap1p to identify domains contributing to its ability to facilitate binding of Gcr1p. We prepared full-length and three truncated versions of Rap1p and tested their ability to facilitate binding of Gcr1p by gel shift assay. The ability to detect ternary complexes containing Rap1p⋅DNA⋅Gcr1p depended on the presence of binding sites for both proteins in the probe DNA. The DNA-binding domain of Rap1p, although competent to bind DNA, was unable to facilitate binding of Gcr1p. Full-length Rap1p and the amino- and carboxyl-truncated versions of Rap1p were each able to facilitate binding of Gcr1p at an appropriately spaced binding site. Under these conditions, Gcr1p displayed an approximately 4-fold greater affinity for Rap1p-bound DNA than for otherwise identical free DNA. When spacing between Rap1p- and Gcr1p-binding sites was altered by insertion of five nucleotides, the ability to form ternary Rap1p⋅DNA⋅Gcr1p complexes was inhibited by all but the DNA-binding domain of Rap1p itself; however, the ability of each individual protein to bind the DNA probe was unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the genetic networks that operate inside cells will require the dissection of interactions among network members. Here we describe a peptide aptamer isolated from a combinatorial library that distinguishes among such interactions. This aptamer binds to cyclin-dependent kinase 2 (Cdk2) and inhibits its kinase activity. In contrast to naturally occurring inhibitors, such as p21Cip1, which inhibit the activity of Cdk2 on all its substrates, inhibition by pep8 has distinct substrate specificity. We show that the aptamer binds to Cdk2 at or near its active site and that its mode of inhibition is competitive. Expression of pep8 in human cells retards their progression through the G1 phase of the cell cycle. Our results suggest that the aptamer inhibits cell-cycle progression by blocking the activity of Cdk2 on substrates needed for the G1-to-S transition. This work demonstrates the feasibility of selection of artificial proteins to perform functions not developed during evolution. The ability to select proteins that block interactions between a gene product and some partners but not others should make sophisticated genetic manipulations possible in human cells and other currently intractable systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissection of the primary and secondary response to an influenza A virus established that the liver contains a substantial population of CD8+ T cells specific for the immunodominant epitope formed by H-2Db and the influenza virus nucleoprotein peptide fragment NP366–374 (DbNP366). The numbers of CD8+ DbNP366+ cells in the liver reflected the magnitude of the inflammatory process in the pneumonic lung, though replication of this influenza virus is limited to the respiratory tract. Analysis of surface phenotypes indicated that the liver CD8+ DbNP366+ cells tended to be more “activated” than the set recovered from lymphoid tissue but generally less so than those from the lung. The distinguishing characteristic of the lymphocytes from the liver was that the prevalence of the CD8+ DbNP366+ set was always much higher than the percentage of CD8+ T cells that could be induced to synthesize interferon γ after short-term, in vitro stimulation with the NP366–374 peptide, whereas these values were generally comparable for virus-specific CD8+ T cells recovered from other tissue sites. Also, the numbers of apoptotic CD8+ T cells were higher in the liver. The results overall are consistent with the idea that antigen-specific CD8+ T cells are destroyed in the liver during the control and resolution phases of this viral infection, though this destruction is not necessarily an immediate process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natriuretic peptides, produced in the heart, bind to the natriuretic peptide receptor A (NPRA) and cause vasodilation and natriuresis important in the regulation of blood pressure. We here report that mice lacking a functional Npr1 gene coding for NPRA have elevated blood pressures and hearts exhibiting marked hypertrophy with interstitial fibrosis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a compensated state of systemic hypertension in which cardiac hypertrophy and dilatation are evident but with no reduction in ventricular performance. Nevertheless, sudden death, with morphologic evidence indicative in some animals of congestive heart failure and in others of aortic dissection, occurred in all 15 male mice lacking Npr1 before 6 months of age, and in one of 16 females in our study. Thus complete absence of NPRA causes hypertension in mice and leads to cardiac hypertrophy and, particularly in males, lethal vascular events similar to those seen in untreated human hypertensive patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hearing is one of the last sensory modalities to be subjected to genetic analysis in Drosophila melanogaster. We describe a behavioral assay for auditory function involving courtship among groups of males triggered by the pulse component of the courtship song. In a mutagenesis screen for mutations that disrupt the auditory response, we have recovered 15 mutations that either reduce or abolish this response. Mutant audiograms indicate that seven mutants reduced the amplitude of the response at all intensities. Another seven abolished the response altogether. The other mutant, 5L3, responded only at high sound intensities, indicating that the threshold was shifted in this mutant. Six mutants were characterized in greater detail. 5L3 had a general courtship defect; courtship of females by 5L3 males also was affected strongly. 5P1 males courted females normally but had reduced success at copulation. 5P1 and 5N18 showed a significant decrement in olfactory response, indicating that the defects in these mutations are not specific to the auditory pathway. Two other mutants, 5M8 and 5N30, produced amotile sperm although in 5N30 this phenotype was genetically separable from the auditory phenotype. Finally, a new adult circling behavior phenotype, the pirouette phenotype, associated with massive neurodegeneration in the brain, was discovered in two mutants, 5G10 and 5N18. This study provides the basis for a genetic and molecular dissection of auditory mechanosensation and auditory behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All-trans and 9-cis retinoic acids (RA) signals are transduced by retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers that act as functional units controlling the transcription of RA-responsive genes. With the aim of elucidating the underlying molecular mechanisms, we have developed an in vitro transcription system using a chromatin template made up of a minimal promoter and a direct repeat with 5-spacing-based RA response element. RARα and RXRα were expressed in and purified from baculovirus-infected Sf9 cells, and transcription was carried out by using naked DNA or chromatin templates. Transcription from naked templates was not affected by the presence of RA and/or RAR/RXR heterodimers. In contrast, very little transcription occurred from chromatin templates in the absence of RA or RAR/RXR heterodimers whereas their addition resulted in a dosage-dependent stimulation of transcription that never exceeded that occurring on naked DNA templates. Most importantly, the addition of synthetic agonistic or antagonistic retinoids to the chromatin transcription system mimicked their stimulatory or inhibitory action in vivo, and activation by a RXR-specific retinoid was subordinated to the binding of an agonist ligand to the RAR partner. Moreover, the addition of the p300 coactivator generated a synergistic enhancement of transcription. Thus, the dissection of this transcription system ultimately should lead to the elucidation of the molecular mechanisms by which RAR/RXR heterodimers control transcription in a ligand-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mouse model for Down syndrome, Ts1Cje, has been developed. This model has made possible a step in the genetic dissection of the learning, behavioral, and neurological abnormalities associated with segmental trisomy for the region of mouse chromosome 16 homologous with the so-called “Down syndrome region” of human chromosome segment 21q22. Tests of learning in the Morris water maze and assessment of spontaneous locomotor activity reveal distinct learning and behavioral abnormalities, some of which are indicative of hippocampal dysfunction. The triplicated region in Ts1Cje, from Sod1 to Mx1, is smaller than that in Ts65Dn, another segmental trisomy 16 mouse, and the learning deficits in Ts1Cje are less severe than those in Ts65Dn. In addition, degeneration of basal forebrain cholinergic neurons, which was observed in Ts65Dn, was absent in Ts1Cje.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron regulatory protein-1 (IRP-1), a central cytoplasmic regulator of cellular iron metabolism, is rapidly activated by oxidative stress to bind to mRNA iron-responsive elements. We have reconstituted the response of IRP-1 to extracellular H2O2 in a system derived from murine B6 fibroblasts permeabilized with streptolysin-O. This procedure allows separation of the cytosol from the remainder of the cells (cell pellet). IRP-1 in the cytosolic fraction fails to be directly activated by addition of H2O2. IRP-1 activation requires the presence of a nonsoluble, possibly membrane-associated component in the cell pellet. The streptolysin-O-based in vitro system faithfully recapitulates characteristic hallmarks of IRP-1 activation by H2O2 in intact cells. We show that the H2O2-mediated activation of IRP-1 is temperature dependent and sensitive to treatment with calf intestinal alkaline phosphatase (CIAP). Although IRP-1 activation is unaffected by addition of excess ATP or GTP to this in vitro system, it is negatively affected by the nonhydrolyzable nucleotide analogs adenylyl-imidodiphosphate and guanylyl-imidophosphate and completely blocked by ATP-γS and GTP-γS. The in vitro reconstitution of this oxidative stress-induced pathway has opened a different avenue for the biochemical dissection of the regulation of mammalian iron metabolism by oxidative stress. Our data show that H2O2 must be sensed to stimulate a pathway to activate IRP-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular processes are mediated by complex networks of molecular interactions. Dissection of their role most commonly is achieved by using genetic mutations that alter, for example, protein–protein interactions. Small molecules that accomplish the same result would provide a powerful complement to the genetic approach, but it generally is believed that such molecules are rare. There are several natural products, however, that illustrate the feasibility of this approach. Split-pool synthesis now provides a simple mechanical means to prepare vast numbers of complex, even natural product-like, molecules individually attached to cell-sized polymer beads. Here, we describe a genetic system compatible with split-pool synthesis that allows the detection of cell-permeable, small molecule inhibitors of protein–protein interactions in 100- to 200-nl cell culture droplets, prepared by a recently described technique that arrays large numbers of such droplets. These “nanodroplets” contain defined media, cells, and one or more beads containing ≈100 pmol of a photoreleasable small molecule and a controlled number of cells. The engineered Saccharomyces cerevisiae cells used in this study express two interacting proteins after induction with galactose whose interaction results in cell death in the presence of 5-fluoroorotic acid (inducible reverse two-hybrid assay). Disruption of the interaction by a small molecule allows growth, and the small molecule can be introduced into the system hours before induction of the toxic interaction. We demonstrate that the interaction between the activin receptor R1 and the immunophilin protein FKBP12 can be disrupted by the small molecule FK506 at nanomolar concentrations in nanodroplets. This system should provide a general method for selecting cell-permeable ligands that can be used to study the relevance of protein–protein interactions in living cells or organisms.