864 resultados para Direct currents
Resumo:
Time-resolved studies of germylene, GeH2, and dimethygermylene, GeMe2, generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to try to obtain rate coefficients for their bimolecular reactions with dimethylgermane, Me2GeH2, in the gas-phase. GeH2 + Me2GeH2 was studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 296-553 K. Only slight pressure dependences were found (at 386, 447 and 553 K). RRKM modelling was carried out to fit these pressure dependences. The high pressure rate coefficients gave the Arrhenius parameters: log(A/cm(3) molecule(-1)s(-1)) = -10.99 +/- 0.07 and E-a = -(7.35 +/- 0.48) kJ mol(-1). No reaction could be found between GeMe2 + Me2GeH2 at any temperature up to 549 K, and upper limits of ca. 10(-14) cm(3) molecule(-1)s(-1) were set for the rate coefficients. A rate coefficient of (1.33 +/- 0.04) x 10(-11)cm(3) molecule(-1)s(-1) was also obtained for GeH2 + MeGeH3 at 296 K. No reaction was found between GeMe2 and MeGeH3. Rate coefficient comparisons showed, inter alia, that in the substrate germane Me-for-H substitution increased the magnitudes of rate coefficients significantly, while in the germylene Me-for-H substitution decreased the magnitudes of rate coefficients by at least four orders of magnitude. Quantum chemical calculations (G2(MP2,SVP)// B3LYP level) supported these findings and showed that the lack of reactivity of GeMe2 is caused by a positive energy barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper.
Resumo:
Chlorosilylene, ClSiH, was prepared by 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene in the gas phase. ClSiH was monitored in real time at 457.9 nm using a CW argon ion laser. The kinetics of reactions of ClSiH with C2H4, CH2 = CHCMe3, C2H2, Me2O, SO2, HCl, MeSiH3, Me2SiH2, Me3SiH, MeGeH3, MeGeH3 and precursor have been studied at ambient temperatures for the first time. Addition reactions of ClSiH and reactions with lone pair donors are faster than insertion reactions. Surprisingly ClSiH inserts faster into Si-H than Ge-H bonds. ClSiH is intermediate in reactivity between SiH2 and SiCI2. Relative reactivities of CISiH and SiH2 vary considerably. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Time-resolved studies of germylene, GeH2, generated by the 193 nm laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reactions with ethyl- and diethylgermanes in the gas phase. The reactions were studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 297-564 K. Only slight pressure dependences were found for GeH2 + EtGeH3 (399, 486, and 564 K). The high pressure rate constants gave the following Arrhenius parameters: for GeH2 + EtGeH3, log A = -10.75 +/- 0.08 and E-a = -6.7 +/- 0.6 kJ mol(-1); for GeH2 + Et2GeH2, log A = -10.68 +/- 0.11 and E-a = -6.95 +/- 0.80 kJ mol(-1). These are consistent with fast, near collision-controlled, association processes at 298 K. RRKM modeling calculations are, for the most part, consistent with the observed pressure dependence of GeH2 + EtGeH3. The ethyl substituent effects have been extracted from these results and are much larger than the analogous methyl substituent effects in the SiH2 + methylsilane reaction series. This is consistent with a mechanistic model for Ge-H insertion in which the intermediate complex has a sizable secondary barrier to rearrangement.
Resumo:
The photochemistry of 1,1-dimethyl- and 1,1,3,4-tetramethylstannacyclopent-3-ene (4a and 4b,respectively) has been studied in the gas phase and in hexane solution by steady-state and 193-nm laser flash photolysis methods. Photolysis of the two compounds results in the formation of 1,3-butadiene (from 4a) and 2,3-dimethyl-1,3-butadiene (from 4b) as the major products, suggesting that cycloreversion to yield dimethylstannylene (SnMe2) is the main photodecomposition pathway of these molecules. Indeed, the stannylene has been trapped as the Sn-H insertion product upon photolysis of 4a in hexane containing trimethylstannane. Flash photolysis of 4a in the gas phase affords a transient absorbing in the 450-520nm range that is assigned to SnMe2 by comparison of its spectrum and reactivity to those previously reported from other precursors. Flash photolysis of 4b in hexane solution affords results consistent with the initial formation of SnMe2 (lambda(max) approximate to 500 nm), which decays over similar to 10 mu s to form tetramethyldistannene (5b; lambda(max) approximate to 470 nm). The distannene decays over the next ca. 50 mu s to form at least two other longer-lived species, which are assigned to higher SnMe2 oligomers. Time-dependent DFT calculations support the spectral assignments for SnMe2 and Sn2Me4, and calculations examining the variation in bond dissociation energy with substituent (H, Me, and Ph) in disilenes, digermenes, and distannenes rule out the possibility that dimerization of SnMe2 proceeds reversibly. Addition of methanol leads to reversible reaction with SnMe2 to form a transient absorbing at lambda(max) approximate to 360 nm, which is assigned to the Lewis acid-base complex between SnMe2 and the alcohol.
Resumo:
We report here top-down emissions estimates for an African megacity. A boundary layer circumnavigation of Lagos, Nigeria was completed using the FAAM BAe146 aircraft as part of the AMMA project. These observations together with an inferred boundary layer height allow the flux of pollutants to be calculated. Extrapolation gives annual emissions for CO, NOx, and VOCs of 1.44 Tg yr(-1), 0.03 Tg yr(-1) and 0.37 Tg yr(-1) respectively with uncertainties of (+250)/(-60%). These inferred emissions are consistent with bottom-up estimates for other developing megacities and are attributed to the evaporation of fuels, mobile combustion and natural gas emissions.
Resumo:
This paper compares and contrasts, for the first time, one- and two-component gelation systems that are direct structural analogues and draws conclusions about the molecular recognition pathways that underpin fibrillar self-assembly. The new one-component systems comprise L-lysine-based dendritic headgroups covalently connected to an aliphatic diamine spacer chain via an amide bond, One-component gelators with different generations of headgroup (from first to third generation) and different length spacer chains are reported. The self-assembly of these dendrimers in toluene was elucidated using thermal measurements, circular dichroism (CD) and NMR spectroscopies, scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS). The observations are compared with previous results for the analogous two-component gelation system in which the dendritic headgroups are bound to the aliphatic spacer chain noncovalently via acid-amine interactions. The one-component system is inherently a more effective gelator, partly as a consequence of the additional covalent amide groups that provide a new hydrogen bonding molecular recognition pathway, whereas the two-component analogue relies solely on intermolecular hydrogen bond interactions between the chiral dendritic headgroups. Furthermore, because these amide groups are important in the assembly process for the one-component system, the chiral information preset in the dendritic headgroups is not always transcribed into the nanoscale assembly, whereas for the two-component system, fiber formation is always accompanied by chiral ordering because the molecular recognition pathway is completely dependent on hydrogen bond interactions between well-organized chiral dendritic headgroups.
Resumo:
Background: NHS Direct is a new service that offers 24-hour advice from trained nurses. The National Service Framework for Mental Health and the National Strategy for Carers both mention NHS Direct as an important source of support for people with mental health problems. Aims: This paper reports findings from an evaluation of the Department of Health's NHS Direct mental health initiative. This initiative was established to ensure that NHS Direct can meet the needs of callers with mental health problems by offering additional training to all staff and improving the database of mental health services. Method: The findings reported here are based on routine computer data provided by 12 out of 17 NHS Direct sites, 552 data forms completed by nurse advisers from the 17 sites, and 111 questionnaires administered over the telephone with callers to the 17 sites. Results: Mental health calls accounted for 3% of NHS Direct's workload, although these calls were often longer and more complex than other calls. The majority of callers to the service were in touch with other services for their mental health problems (59%), typically their GP. Most callers had 'moderate' mental health problems, as indicated by the Global Assessment of Functioning Scale. Generally callers were satisfied with the service they received, although satisfaction was lower in some areas than previous studies of NHS Direct. Conclusions: Improvements could be made in the mechanisms for referring callers on to other services, and training to increase nurse advisers' knowledge of mental health problems.
Resumo:
Momentum strategies have the potential to generate extra profits in private real estate markets. Tests of a variety of frequencies of portfolio reweighting identify periods of winner and loser performance. There are strong potential gains from momentum strategies that are based on prior returns over a 6- to 12-month period. Whether these gains are attainable for real-world investors depends on transaction costs, but some momentum strategies do produce net excess returns. The findings hold even if returns are unsmoothed to reflect underlying market prices.
Resumo:
The current study aims to assess the applicability of direct or indirect normalization for the analysis of fractional anisotropy (FA) maps in the context of diffusion-weighted images (DWIs) contaminated by ghosting artifacts. We found that FA maps acquired by direct normalization showed generally higher anisotropy than indirect normalization, and the disparities were aggravated by the presence of ghosting artifacts in DWIs. The voxel-wise statistical comparisons demonstrated that indirect normalization reduced the influence of artifacts and enhanced the sensitivity of detecting anisotropy differences between groups. This suggested that images contaminated with ghosting artifacts can be sensibly analyzed using indirect normalization.
Resumo:
Inverse bicontinuous cubic (Q(II)) phases are nanostructured materials formed by lipid self-assembly. We have successfully imaged thin films of hydrated Q(II) phases from two different systems using AFM. The images show periodic arrays of water channels with spacing and symmetry consistent with published SAXS data on the bulk materials.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
This paper presents an application study into the use of a bi-directional link with the human nervous system by means of an implant, positioned through neurosurgery. Various applications are described including the interaction of neural signals with an articulated hand, a group of cooperative autonomous robots and to control the movement of a mobile platform. The microelectrode array implant itself is described in detail. Consideration is given to a wider range of possible robot mechanisms, which could interact with the human nervous system through the same technique.