961 resultados para Differentiation and Applicability


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The androgen receptor (AR) is a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. Mutations or abnormal expression of AR in prostate cancer can play a key role in the process that changes prostate cancer from androgen-dependent to an androgen-independent stage. Using a yeast two-hybrid system, we were able to isolate a ligand-dependent AR-associated protein (ARA70), which functions as an activator to enhance AR transcriptional activity 10-fold in the presence of 10(-10) M dihydrotestosterone or 10(-9) M testosterone, but not 10(-6) M hydroxyflutamide in human prostate cancer DU145 cells. Our data further indicated that ARA70 Will only slightly induce the transcriptional activity of other steroid receptors such as estrogen receptor, glucocorticoid receptor, and progesterone receptor in DU145 cells. Together, these data suggest that AR may need a specific coactivator(s) such as ARA70 for optimal androgen activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hematopoiesis gives rise to blood cells of different lineages throughout normal life. Abnormalities in this developmental program lead to blood cell diseases including leukemia. The establishment of a cell culture system for the clonal development of hematopoietic cells made it possible to discover proteins that regulate cell viability, multiplication and differentiation of different hematopoietic cell lineages, and the molecular basis of normal and abnormal blood cell development. These regulators include cytokines now called colony-stimulating factors (CSFs) and interleukins (ILs). There is a network of cytokine interactions, which has positive regulators such as CSFs and ILs and negative regulators such as transforming growth factor beta and tumor necrosis factor (TNF). This multigene cytokine network provides flexibility depending on which part of the network is activated and allows amplification of response to a particular stimulus. Malignancy can be suppressed in certain types of leukemic cells by inducing differentiation with cytokines that regulate normal hematopoiesis or with other compounds that use alternative differentiation pathways. This created the basis for the clinical use of differentiation therapy. The suppression of malignancy by inducing differentiation can bypass genetic abnormalities that give rise to malignancy. Different CSFs and ILs suppress programmed cell death (apoptosis) and induce cell multiplication and differentiation, and these processes of development are separately regulated. The same cytokines suppress apoptosis in normal and leukemic cells, including apoptosis induced by irradiation and cytotoxic cancer chemotherapeutic compounds. An excess of cytokines can increase leukemic cell resistance to cytotoxic therapy. The tumor suppressor gene wild-type p53 induces apoptosis that can also be suppressed by cytokines. The oncogene mutant p53 suppresses apoptosis. Hematopoietic cytokines such as granulocyte CSF are now used clinically to correct defects in hematopoiesis, including repair of chemotherapy-associated suppression of normal hematopoiesis in cancer patients, stimulation of normal granulocyte development in patients with infantile congenital agranulocytosis, and increase of hematopoietic precursors for blood cell transplantation. Treatments that decrease the level of apoptosis-suppressing cytokines and downregulate expression of mutant p53 and other apoptosis suppressing genes in cancer cells could improve cytotoxic cancer therapy. The basic studies on hematopoiesis and leukemia have thus provided new approaches to therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce beta-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the GI cyclin kinase inhibitor p21/WAF-1 and positive proliferative signals including c-myc and cyclin DI were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor alpha and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-beta1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycystic kidney disease 1 (PKD1) is the major locus of the common genetic disorder autosomal dominant polycystic kidney disease. We have studied PKD1 mRNA, with an RNase protection assay, and found widespread expression in adult tissue, with high levels in brain and moderate signal in kidney. Expression of the PKD1 protein, polycystin, was assessed in kidney using monoclonal antibodies to a recombinant protein containing the C terminus of the molecule. In fetal and adult kidney, staining is restricted to epithelial cells. Expression in the developing nephron is most prominent in mature tubules, with lesser staining in Bowman's capsule and the proximal ureteric bud. In the nephrogenic zone, detectable signal was observed in comma- and S-shaped bodies as well as the distal branches of the ureteric bud. By contrast, uninduced mesenchyme and glomerular tufts showed no staining. In later fetal (>20 weeks) and adult kidney, strong staining persists in cortical tubules with moderate staining detected in the loops of Henle and collecting ducts. These results suggest that polycystin's major role is in the maintenance of renal epithelial differentiation and organization from early fetal life. Interestingly, polycystin expression, monitored at the mRNA level and by immunohistochemistry, appears higher in cystic epithelia, indicating that the disease does not result from complete loss of the protein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Telomerase, a ribonucleic acid-protein complex, adds hexameric repeats of 5'-TTAGGG-3' to the ends of mammalian chromosomal DNA (telomeres) to compensate for the progressive loss that occurs with successive rounds of DNA replication. Although somatic cells do not express telomerase, germ cells and immortalized cells, including neoplastic cells, express this activity. To determine whether the phenotypic differentiation of immortalized cells is linked to the regulation of telomerase activity, terminal differentiation was induced in leukemic cell lines by diverse agents. A pronounced downregulation of telomerase activity was produced as a consequence of the differentiated status. The differentiation-inducing agents did not directly inhibit telomerase activity, suggesting that the inhibition of telomerase activity is in response to induction of differentiation. The loss of telomerase activity was not due to the production of an inhibitor, since extracts from differentiated cells did not cause inhibition of telomerase activity. By using additional cell lineages including epithelial and embryonal stem cells, down-regulation of telomerase activity was found to be a general response to the induction of differentiation. These findings provide the first direct link between telomerase activity and terminal differentiation and may provide a model to study regulation of telomerase activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phenotypes of CD19-deficient (CD19-/-) mice, and human CD19-transgenic (hCD19TG) mice that overexpress CD19 indicate that CD19 is a response regulator of B-lymphocyte surface receptor signaling. To further characterize the function of CD19 during B-cell differentiation, humoral immune responses to a T-cell-independent type 1 [trinitrophenyl-lipopolysaccharide (TNP-LPS)], a T-cell-independent type 2 [dinitrophenyl (DNP)-Ficoll], and a T-cell-dependent [DNP-keyhole limpet hemocyanin (KLH)] antigen were assessed in CD19-/- and hCD19TG mice. B cells from CD19-/- mice differentiated and underwent immunoglobulin isotype switching in vitro in response to mitogens and cytokines. In vivo, CD19-/- mice generated humoral responses to TNP-LPS and DNP-KLH that were dramatically lower than those of wild-type littermates. Surprisingly, the humoral response to DNP-Ficoll was significantly greater in CD19-/- mice. In contrast, hCD19TG mice were hyperresponsive to TNP-LPS and DNP-KLH immunization but were hyporesponsive to DNP-Ficoll. These results demonstrate that CD19 is not required for B-cell differentiation and isotype switching but serves as a response regulator which modulates B-cell differentiation. Since humoral responses to both T-cell-dependent and T-cell-independent antigens were similarly affected by alterations in CD19 expression, these differences are most likely to result from intrinsic changes in B-cell function rather than from the selective disruption of B-cell interactions with T cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Treatment of the human promyelocytic leukemia cell line HL-60 with antisense oligodeoxynucleotides to UDP-N-acetylgalactosamine:beta-1,4-N-acetylgalactosaminyl-transferase (GM2-synthase; EC 2.4.1.92) and CMP-sialic acid:alpha-2,8-sialyltransferase (GD3-synthase; EC 2.4.99.8) sequences effectively down-regulated the synthesis of more complex gangliosides in the ganglioside synthetic pathways after GM3, resulting in a remarkable increase in endogenous GM3 with concomitant decreases in more complex gangliosides. The treated cells underwent monocytic differentiation as judged by morphological changes, adherent ability, and nitroblue tetrazolium staining. These data provide evidence that the increased endogenous ganglioside GM3 may play an important role in regulating cellular differentiation and that the antisense DNA technique proves to be a powerful tool in manipulating glycolipid synthesis in the cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hippocampal neurons maintained in primary culture recycle synaptic vesicles and express functional glutamate receptors since early stages of neuronal development. By analyzing glutamate-induced cytosolic calcium changes to sense presynaptically released neurotransmitter, we demonstrate that the ability of neurons to release glutamate in the extracellular space is temporally coincident with the property of synaptic vesicles to undergo exocytotic-endocytotic recycling. Neuronal differentiation and maturation of synaptic contacts coincide with a change in the subtype of calcium channels primarily involved in controlling neurosecretion. Whereas omega-agatoxin IVA-sensitive channels play a role in controlling neurotransmitter secretion at all stages of neuronal differentiation, omega-conotoxin GVIA-sensitive channels are primarily involved in mediating glutamate release at early developmental stages only.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription of the macrophage scavenger receptor A gene is markedly upregulated during monocyte to macrophage differentiation. In these studies, we demonstrate that 291 bp of the proximal scavenger receptor promoter, in concert with a 400-bp upstream enhancer element, is sufficient to direct macrophage-specific expression of a human growth hormone reporter in transgenic mice. These regulatory elements, which contain binding sites for PU.1, AP-1, and cooperating ets-domain transcription factors, are also sufficient to mediate regulation of transgene expression during the in vitro differentiation of bone marrow progenitor cells in response to macrophage colony-stimulating factor. Mutation of the PU.1 binding site within the scavenger receptor promoter severely impairs transgene expression, consistent with a crucial role of PU.1 in regulating the expression of the scavenger receptor gene. The ability of the scavenger receptor promoter and enhancer to target gene expression to macrophages in vivo, including foam cells of atherosclerotic lesions, suggests that these regulatory elements will be of general utility in the study of macrophage differentiation and function by permitting specific modifications of macrophage gene expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Members of the winged helix/forkhead family of transcription factors are believed to play a role in cell-specific gene expression. A cDNA encoding a member of this family of proteins, termed hepatocyte nuclear factor/forkhead homologue 4 (HFH-4), has been isolated from rat lung and rat testis cDNA libraries. This cDNA contains an open reading frame of 421 amino acids with a conserved DNA binding domain and several potential transactivating regions. During murine lung development, a single species of HFH-4-specific transcript (2.4 kb long) is first detected precisely at the start of the late pseudoglandular stage (embryonic day 14.5) and, by in situ hybridization, is specifically localized to the proximal pulmonary epithelium. The unique temporal and spatial pattern of HFH-4 gene expression in the developing lung defines this protein as a marker for the initiation of bronchial epithelial cell differentiation and suggests that it may play an important role in cell fate determination during lung development. In addition to expression in the pulmonary epithelium, RNA blot analysis reveals 2.4-kb HFH-4 transcripts in the testis and oviduct. By using mice with genetic defects in spermatogenesis, HFH-4 expression in the testis is found to be associated with the appearance of haploid germ cells and in situ hybridization studies indicate that HFH-4 expression is confined to stages I-VII of spermatogenesis. This pattern of HFH-4 gene expression during the early stages of differentiation of haploid germ cells suggests that HFH-4 may play a role in regulating stage-specific gene expression and cell-fate determination during lung development and in spermatogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The solubility, density, refractive index, and viscosity data for the ethylene glycol + CsBr + H2O, 1,2-propanediol + CsBr + H2O, and glycerin + CsBr + H2O ternary systems have been determined at (288.15, 298.15, and 308.15) K. In all cases, the solubility of CsBr in aqueous solutions was decreased significantly due to the presence of polyhydric alcohol. The liquid–solid equilibrium experimental data were correlated using the NRTL (nonrandom two-liquid) activity coefficient model, considering nondissociation of the dissolved salt in the liquid phase, and new interaction parameters were estimated. The mean deviations between calculated and experimental compositions were low, showing the good descriptive quality and applicability of the NRTL model. The refractive indices, densities, and viscosities for the unsaturated solutions of the three ternary systems have also been measured at three temperatures. Values for all of the properties were correlated with the salt concentrations and proportions of polyhydric alcohol in the solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All retinal disorders, regardless of their aetiology, involve the activation of oxidative stress and apoptosis pathways. The administration of neuroprotective factors is crucial in all phases of the pathology, even when vision has been completely lost. The retina is one of the most susceptible tissues to reactive oxygen species damage. On the other hand, proper development and functioning of the retina requires a precise balance between the processes of proliferation, differentiation and programmed cell death. The life-or-death decision seems to be the result of a complex balance between pro- and anti-apoptotic signals. It has been recently shown the efficacy of natural products to slow retinal degenerative process through different pathways. In this review, we assess the neuroprotective effect of two compounds used in the ancient pharmacopoeia. On one hand, it has been demonstrated that administration of the saffron constituent safranal to P23H rats, an animal model of retinitis pigmentosa, preserves photoreceptor morphology and number, the capillary network and the visual response. On the other hand, it has been shown that systemic administration of tauroursodeoxycholic acid (TUDCA), the major component of bear bile, to P23H rats preserves cone and rod structure and function, together with their contact with postsynaptic neurons. The neuroprotective effects of safranal and TUDCA make these compounds potentially useful for therapeutic applications in retinal degenerative diseases.