925 resultados para Differential and integral calculus
Resumo:
In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors using the tetON expression cassette in comparison with the CMV promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although GFP was mainly expressed into neurons with both vectors, the relative proportions of DARPP-32+ projection neurons and parvalbumin+ interneurons were respectively 13:1 and 2:1 for the CMV and tetON vectors. DARP32+ neurons projecting to the globus pallidus were strongly GFP+ with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV but poorly by the tetON vector. Numerous GFP+ cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP+ neurons were observed with the CMV but not the tetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-tetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase+ neurons by the tetON vector whereas with the CMV vector, GFP+ cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-tetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.
Resumo:
Our study describes tissue-specific migration of T and B cells during a localized anti-viral immune response. After mouse mammary tumor virus (MMTV) injection, B lymphocytes of the draining lymph node become infected and present a retroviral superantigen to CD4(+) T lymphocytes. Infected B cells receive superantigen-mediated help in a fashion comparable to classical immune responses. To investigate the fate of T and B lymphocytes that had interacted via cognate help in the same peripheral lymph node microenvironment we adoptively transferred them into naive recipients. Here we show that MMTV-infected B cells and superantigen-stimulated T cells were programmed to migrate to distinct sites of the body. Plasmablasts but not T cells migrated to the mammary gland and activated alpha4beta1 integrins were found to have a crucial role in the migration to the mammary gland. In contrast, T cells had a much higher affinity for secondary lymphoid organs and large intestine. This demonstrates that upon antigen-driven B and T lymphocyte interaction in the local draining lymph node a subset-specific homing program for B and T lymphocytes is induced.
Resumo:
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Resumo:
MAP1a is a microtubule-associated protein with an apparent molecular weight of 360 kDa that is found in the axonal and dendritic processes of neurons. Two monoclonal anti-MAP1a antibodies anti-A and anti-BW6, revealed different epitope distributions in the adult mouse cerebellum. Anti-A stained Purkinje and granule cells uniformly throughout the cerebellum. In contrast, anti-BW6 selectively stained the dendriites of a subset of Purkinje cells, revealing parasagittal bands of immunoreactivity in the molecular layer. The compartmentation of the BW6 epitope was compared to the Purkine cells as revealed by immunostaining with anti-zebrin II, a well known antigen expressed selectively by bands of Purkinje cells. The anti-BW6 staining pattern was complementary to the zebrin II bands, the zebrin II- Purkinjke cells having BW6+ dendrites. These results demonstrate that MAP1a is present in two forms in the mouse cerebellum, one of which is segregated into parasagittal bands. This may indicate a unique MAP1a isoform or may reflect differences in the metabolic states of Purkinje cell classes, and regional differences in their functions.
Resumo:
We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.
Resumo:
Olfactory processes were reported to be lateralized. The purpose of this study was to further explore this phenomenon and investigate the effect of the hemispheric localization of epileptogenic foci on olfactory deficits in patients with temporal lobe epilepsy (TLE). Olfactory functioning was assessed in 61 patients and 60 healthy control (HC) subjects. The patients and HC subjects were asked to rate the intensity, pleasantness, familiarity, and edibility of 12 common odorants and then identify them. Stimulations were delivered monorhinally in the nostril ipsilateral to the epileptogenic focus in TLE and arbitrarily in either the left or the right nostril in the HC subjects. The results demonstrated that regardless of the side of stimulation, patients with TLE had reduced performance in all olfactory tasks compared with the HC subjects. With regard to the side of the epileptogenic focus, patients with left TLE judged odors as less pleasant and had more difficulty with identification than patients with right TLE, underlining a privileged role of the left hemisphere in the emotional and semantic processing of odors. Finally, irrespective of group, a tendency towards a right-nostril advantage for judging odor familiarity was found in agreement with a prominent role of the right hemisphere in odor memory processing.
Resumo:
RATIONALE AND OBJECTIVES: To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. METHODS AND MATERIALS: A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. RESULTS: Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. CONCLUSIONS: (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind.
Resumo:
Of all Pacific salmonids, Chinook salmon Oncorhynchus tshawytscha display the greatest variability in return times to freshwater. The molecular mechanisms of these differential return times have not been well described. Current methods, such as long serial analysis of gene expression (LongSAGE) and microarrays, allow gene expression to be analyzed for thousands of genes simultaneously. To investigate whether differential gene expression is observed between fall- and spring-run Chinook salmon from California's Central Valley, LongSAGE libraries were constructed. Three libraries containing between 25,512 and 29,372 sequenced tags (21 base pairs/tag) were generated using messenger RNA from the brains of adult Chinook salmon returning in fall and spring and from one ocean-caught Chinook salmon. Tags were annotated to genes using complementary DNA libraries from Atlantic salmon Salmo salar and rainbow trout O. mykiss. Differentially expressed genes, as estimated by differences in the number of sequence tags, were found in all pairwise comparisons of libraries (freshwater versus saltwater = 40 genes; fall versus spring = 11 genes: and spawning versus nonspawning = 51 genes). The gene for ependymin, an extracellular glycoprotein involved in behavioral plasticity in fish, exhibited the most differential expression among the three groupings. Reverse transcription polymerase chain reaction analysis verified the differential expression of ependymin between the fall- and spring-run samples. These LongSAGE libraries, the first reported for Chinook salmon, provide a window of the transcriptional changes during Chinook salmon return migration to freshwater and spawning and increase the amount of expressed sequence data.
Resumo:
Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.
Resumo:
In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor-β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.
Resumo:
We introduce a variation of the proof for weak approximations that issuitable for studying the densities of stochastic processes which areevaluations of the flow generated by a stochastic differential equation on a random variable that maybe anticipating. Our main assumption is that the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore if the inverse of the Malliavin covariance matrix associated with the process under consideration is sufficiently integrable then approximations fordensities and distributions can also be achieved. We apply theseideas to the case of stochastic differential equations with boundaryconditions and the composition of two diffusions.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
The arenaviruses are an important family of emerging viruses that includes several causative agents of severe hemorrhagic fevers in humans that represent serious public health problems. A crucial step of the arenavirus life cycle is maturation of the envelope glycoprotein precursor (GPC) by the cellular subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). Comparison of the currently known sequences of arenavirus GPCs revealed the presence of a highly conserved aromatic residue at position P7 relative to the SKI-1/S1P cleavage side in Old World and clade C New World arenaviruses but not in New World viruses of clades A and B or cellular substrates of SKI-1/S1P. Using a combination of molecular modeling and structure-function analysis, we found that residueY285 of SKI-1/S1P, distal from the catalytic triad, is implicated in the molecular recognition of the aromatic "signature residue" at P7 in the GPC of Old World Lassa virus. Using a quantitative biochemical approach, we show that Y285 of SKI-1/S1P is crucial for the efficient processing of peptides derived from Old World and clade C New World arenavirus GPCs but not of those from clade A and B New World arenavirus GPCs. The data suggest that during coevolution with their mammalian hosts, GPCs of Old World and clade C New World viruses expanded the molecular contacts with SKI-1/S1P beyond the classical four-amino-acid recognition sequences and currently occupy an extended binding pocket.