947 resultados para Differential Expression Profiling
Resumo:
S100A1 is a Ca(2+)-binding protein and predominantly expressed in the heart. We have generated a mouse line of S100A1 deficiency by gene trap mutagenesis to investigate the impact of S100A1 ablation on heart function. Electrocardiogram recordings revealed that after beta-adrenergic stimulation S100A1-deficient mice had prolonged QT, QTc and ST intervals and intraventricular conduction disturbances reminiscent of 2 : 1 bundle branch block. In order to identify genes affected by the loss of S100A1, we profiled the mutant and wild type cardiac transcriptomes by gene array analysis. The expression of several genes functioning to the electrical activity of the heart were found to be significantly altered. Although the default prediction would be that mRNA and protein levels are highly correlated, comprehensive immunoblot analyses of salient up- or down-regulated candidate genes of any cellular network revealed no significant changes on protein level. Taken together, we found that S100A1 deficiency results in cardiac repolarization delay and alternating ventricular conduction defects in response to sympathetic activation accompanied by a significantly different transcriptional regulation.
Resumo:
Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.
Resumo:
Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units.
Resumo:
PURPOSE: Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disease. Although electroretinographic (ERG) measurements can discriminate clinical subgroups, the identification of the underlying genetic defects has been complicated for CSNB because of genetic heterogeneity, the uncertainty about the mode of inheritance, and time-consuming and costly mutation scanning and direct sequencing approaches. METHODS: To overcome these challenges and to generate a time- and cost-efficient mutation screening tool, the authors developed a CSNB genotyping microarray with arrayed primer extension (APEX) technology. To cover as many mutations as possible, a comprehensive literature search was performed, and DNA samples from a cohort of patients with CSNB were first sequenced directly in known CSNB genes. Subsequently, oligonucleotides were designed representing 126 sequence variations in RHO, CABP4, CACNA1F, CACNA2D4, GNAT1, GRM6, NYX, PDE6B, and SAG and spotted on the chip. RESULTS: Direct sequencing of genes known to be associated with CSNB in the study cohort revealed 21 mutations (12 novel and 9 previously reported). The resultant microarray containing oligonucleotides, which allow to detect 126 known and novel mutations, was 100% effective in determining the expected sequence changes in all known samples assessed. In addition, investigation of 34 patients with CSNB who were previously not genotyped revealed sequence variants in 18%, of which 15% are thought to be disease-causing mutations. CONCLUSIONS: This relatively inexpensive first-pass genetic testing device for patients with a diagnosis of CSNB will improve molecular diagnostics and genetic counseling of patients and their families and gives the opportunity to analyze whether, for example, more progressive disorders such as cone or cone-rod dystrophies underlie the same gene defects.
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.
Resumo:
Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.
Resumo:
RESUME : Les dermatophytes sont les agents infectieux les plus fréquents responsables de la plupart des mycoses superficielles chez les humains et chez les animaux. Ces infections, dermatophytoses, également appelées tineas ou teignes, sont fréquentes et causent des problèmes de santé publique au niveau mondial. La capacité d'envahir et de progresser au sein des structures kératinisées est probablement liée à la sécrétion de différentes enzymes kératinolytiques, qui sont considérées comme la principale caractéristique liée à la pathogénicité de ces champignons. L'objectif de ma thèse a été premièrement de progresser dans l'identification et la caractérisation des nouvelles protéines sécrétées, afin de mieux comprendre a) la capacité globale des dermatophytes à envahir les structures kératinisées, et b) les différences dans la virulence et la spécificité d'hôte que présentent les espèces étudiées .Pour progresser dans l'identification et la caractérisation de ces nouvelles protéines, les secretomes de six espèces de dermatophytes (Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii et Trichophyton tonsurans) ont été étudiés. Bien qu'il y ait un niveau globalement élevé de similitude entre les protéases sécrétées, les différentes espèces de dermatophytes sécrètent des profiles protéiques distincts lorsqu'elles sont cultivées dans les mêmes conditions de culture, et donc une signature spécifique a pu être associé à chaque espèce. Ces profiles ont été un outil avantageux pour identifier et cartographier les protéines orthologues aux six espèces et ont aussi permit la discrimination d'espèces très proches comme T. tonsurans et T. equinum qui ne peuvent pas être différenciées par l'ADN ribosomal. Ce travail également présente ce que l'on croit être la première identification global des protéines sécrétées par les dermatophytes dans des conditions de culture que incitent l'activité protéolytique extracellulaire. Ce catalogue de protéines, comprenant des endo- and exo- proteases, autres hydrolases, oxydoreductases et des protéines avec fonction inconnue, représente probablement le spectre d'enzymes qui permettent la dégradation des tissus kératinisés en composés qui peuvent être assimilés par le champignon. Les résultats suggèrent qu'un changement écologique pourrait être associé à une expression différentielle des gènes codant les protéines sécrétées, en particulier, les protéases, plutôt qu'à des divergences génétiques au niveau des gènes codant les protéines orthologues. Une sécrétion différentielle des protéines par les dermatophytes pourrait également être responsable de la variabilité inflammatoire qui causent ces agents infectieux chez les différents hôtes. Par conséquent, les protéines identifiées ici sont également importantes pour faire la lumière sur la réponse immunitaire de l'hôte au cours du processus infectieux. SUMMARY : Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Dermatophytoses, also called tineas or ringworm, are frequent and cause public health problems worldwide. The secretion of different keratinolytic enzymes is believed to be a key pathogenicity-related characteristic of these fungi. The aim of this work was first to progress in the identification and characterization of novel secreted proteins, in order to better understand a) the overall capability of dermatophytes to invade keratinised structures, and b) differences in virulence and host-specificity of the investigated species. To progress in the identification and characterization of novel proteins, the secretomes from Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii and Trichophyton tonsurans were studied. Although there is a high global level of similarity among the secreted proteases, different dermatophyte species produce distinct patterns of proteins when grown in the same culture medium, and so a specific signature could be associated to each species. These patterns were useful to identify and map orthologous proteins among the six species, as well as to discriminate the closely related species T. tonsurans and T. equinum, which cannot be differentiated by ribosomal DNA. This work also presents the first in-depth identification of the major proteins secreted by dermatophytes growing under conditions promoting extracellular proteolytic activity. This catalogue of proteins, which include several endo- and exo- proteases, other hydrolases, oxydoreductases, and proteins of unknown function, probably represents the spectrum of enzymes that allow the degradation of keratinized tissues into compounds which can be assimilated by the fungus. The results suggest that ecological switching could be related to a differential expression of genes encoding secreted proteins, particularly, proteases, rather than genetic divergences of the genes encoding orthologous proteins. Differential secretion of proteins by Dermatophyte species could also be responsible for the variable inflammation caused by the infectious agent within the host. Therefore, the proteins here identified are also important to shed light into the immune response of the host during the infection process.
Resumo:
The Drosophila transcription factor Prospero functions as a tumor suppressor, and it has been suggested that the human counterpart of Prospero, PROX1, acts similarly in human cancers. However, we show here that PROX1 promotes dysplasia in colonic adenomas and colorectal cancer progression. PROX1 expression marks the transition from benign colon adenoma to carcinoma in situ, and its loss inhibits growth of human colorectal tumor xenografts and intestinal adenomas in Apc(min/+) mice, while its transgenic overexpression promotes colorectal tumorigenesis. Furthermore, in intestinal tumors PROX1 is a direct and dose-dependent target of the beta-catenin/TCF signaling pathway, responsible for the neoplastic transformation. Our data underscore the complexity of cancer pathogenesis and implicate PROX1 in malignant tumor progression through the regulation of cell polarity and adhesion.
Resumo:
Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the BCL2 family that is deregulated in various solid and hematological malignancies. However, its role in the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL) is unclear. We analyzed gene expression profiling data from 350 DLBCL patient samples and detected that activated B-cell-like (ABC) DLBCLs express MCL1 at significantly higher levels compared with germinal center B-cell-like DLBCL patient samples (P=2.7 × 10(-10)). Immunohistochemistry confirmed high MCL1 protein expression predominantly in ABC DLBCL in an independent patient cohort (n=249; P=0.001). To elucidate molecular mechanisms leading to aberrant MCL1 expression, we analyzed array comparative genomic hybridization data of 203 DLBCL samples and identified recurrent chromosomal gains/amplifications of the MCL1 locus that occurred in 26% of ABC DLBCLs. In addition, aberrant STAT3 signaling contributed to high MCL1 expression in this subtype. Knockdown of MCL1 as well as treatment with the BH3-mimetic obatoclax induced apoptotic cell death in MCL1-positive DLBCL cell lines. In summary, MCL1 is deregulated in a significant fraction of ABC DLBCLs and contributes to therapy resistance. These data suggest that specific inhibition of MCL1 might be utilized therapeutically in a subset of DLBCLs.
Resumo:
BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Resumo:
Invariant NKT (iNKT) cells play key roles in host defense by recognizing lipid Ags presented by CD1d. iNKT cells are activated by bacterial-derived lipids and are also strongly autoreactive toward self-lipids. iNKT cell responsiveness must be regulated to maintain effective host defense while preventing uncontrolled stimulation and potential autoimmunity. CD1d-expressing thymocytes support iNKT cell development, but thymocyte-restricted expression of CD1d gives rise to Ag hyperresponsive iNKT cells. We hypothesized that iNKT cells require functional education by CD1d(+) cells other than thymocytes to set their correct responsiveness. In mice that expressed CD1d only on thymocytes, hyperresponsive iNKT cells in the periphery expressed significantly reduced levels of tyrosine phosphatase SHP-1, a negative regulator of TCR signaling. Accordingly, heterozygous SHP-1 mutant mice displaying reduced SHP-1 expression developed a comparable population of Ag hyperresponsive iNKT cells. Restoring nonthymocyte CD1d expression in transgenic mice normalized SHP-1 expression and iNKT cell reactivity. Radiation chimeras revealed that CD1d(+) dendritic cells supported iNKT cell upregulation of SHP-1 and decreased responsiveness after thymic emigration. Hence, dendritic cells functionally educate iNKT cells by tuning SHP-1 expression to limit reactivity.
Resumo:
PURPOSE: A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS: We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS: The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS: Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.
Resumo:
Correlates of immune-mediated protection to most viral and cancer vaccines are still unknown. This impedes the development of novel vaccines to incurable diseases such as HIV and cancer. In this study, we have used functional genomics and polychromatic flow cytometry to define the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of 40 volunteers followed for up to 1 yr after vaccination. We show that immunization with YF17D leads to an integrated immune response that includes several effector arms of innate immunity, including complement, the inflammasome, and interferons, as well as adaptive immunity as shown by an early T cell response followed by a brisk and variable B cell response. Development of these responses is preceded, as demonstrated in three independent vaccination trials and in a novel in vitro system of primary immune responses (modular immune in vitro construct [MIMIC] system), by the coordinated up-regulation of transcripts for specific transcription factors, including STAT1, IRF7, and ETS2, which are upstream of the different effector arms of the immune response. These results clearly show that the immune response to a strong vaccine is preceded by coordinated induction of master transcription factors that lead to the development of a broad, polyfunctional, and persistent immune response that integrates all effector cells of the immune system.
Resumo:
Insect attack triggers changes in transcript level in plants that are mediated predominantly by jasmonic acid (JA). The implication of ethylene (ET), salicylic acid (SA), and other signals in this response is less understood and was monitored with a microarray containing insect- and defense-regulated genes. Arabidopsis thaliana mutants coi1-1, ein2-1, and sid2-1 impaired in JA, ET, and SA signaling pathways were challenged with the specialist small cabbage white (Pieris rapae) and the generalist Egyptian cotton worm (Spodoptera littoralis). JA was shown to be a major signal controlling the upregulation of defense genes in response to either insect but was found to suppress changes in transcript level only in response to P. rapae. Larval growth was affected by the JA-dependent defenses, but S. littoralis gained much more weight on coi1-1 than P. rapae. ET and SA mutants had an altered transcript profile after S. littoralis herbivory but not after P. rapae herbivory. In contrast, both insects yielded similar transcript signatures in the abscisic acid (ABA)-biosynthetic mutants aba2-1 and aba3-1, and ABA controlled transcript levels both negatively and positively in insect-attacked plants. In accordance with the transcript signature, S. littoralis larvae performed better on aba2-1 mutants. This study reveals a new role for ABA in defense against insects in Arabidopsis and identifies some components important for plant resistance to herbivory.