968 resultados para Developmentally Important Genes
Resumo:
The majority of severe epileptic encephalopathies of early childhood are symptomatic where a clear etiology is apparent. There is a small subgroup, however, where no etiology is found on imaging and metabolic studies, and genetic factors are important. Myoclonic-astatic epilepsy (MAE) and severe myoclonic epilepsy in infancy (SMEI), also known as Dravet syndrome, are epileptic encephalopathies where multiple seizure types begin in the first few years of life associated with developmental slowing. Clinical and molecular genetic studies of the families of probands with MAE and SMEI suggest a genetic basis. MAE was originally identified as part of the genetic epilepsy syndrome generalized epilepsy with febrile seizures plus (GEFS(+)). Recent clinical genetic studies suggest that SMEI forms the most severe end of the spectrum of the GEFS(+). GEF(+) has now been associated with molecular defects in three sodium channel subunit genes and a GABA subunit gene. Molecular defects of these genes have been identified in patients with MAE and SMEI. Interestingly, the molecular defects in MAE have been found in the setting of large GEFS(+) pedigrees, whereas, more severe truncation mutations arising de novo have been identified in patients with SMEI. It is likely that future molecular studies will shed light on the interaction of a number of genes, possibly related to the same or different ion channels, which result in a severe phenotype such as MAE and SMEI. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background: T lymphocytes and mast cells infiltrate the lamina propria in oral lichen planus (OLP). Chemokines and their receptors are involved in T cell and mast cell migration and accumulation during the inflammatory process. Methods: In the present study, we investigated the role of RANTES and its receptors in OLP using immunohistochemistry, RT-PCR and an in vitro chemotaxis assay. Results: RANTES and CCR1 were expressed on T cells and mast cells in OLP, while OLP lesional T cell supernatants stimulated CCR1 mRNA expression in a human leukemia mast cell line (HMC-1). TNF-alpha stimulated CCR1, CCR4 and CCR5 mRNA expression in the same cell line. OLP lesional T cell supernatants stimulated HMC-1 migration, which was partly inhibited by anti-RANTES antibody. Conclusions: The present study shows, for the first time, the distribution of RANTES and CCR1 in OLR It is hypothesized that RANTES and CCR1 may play important roles in mast cell trafficking and related events in OLP.
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
To identify novel cytokine-related genes, we searched the set of 60,770 annotated RIKEN mouse cDNA clones (FANTOM2 clones), using keywords such as cytokine itself or cytokine names (such as interferon, interleukin, epidermal growth factor, fibroblast growth factor, and transforming growth factor). This search produced 108 known cytokines and cytokine-related products such as cytokine receptors, cytokine-associated genes, or their products (enhancers, accessory proteins, cytokine-induced genes). We found 15 clusters of FANTOM2 clones that are candidates for novel cytokine-related genes. These encoded products with strong sequence similarity to guanylate-binding protein (GBP-5), interleukin-1 receptor-associated kinase 2 (IRAK-2), interleukin 20 receptor alpha isoform 3, a member of the interferon-inducible proteins of the Ifi 200 cluster, four members of the membrane-associated family 1-8 of interferon-inducible proteins, one p27-like protein, and a hypothetical protein containing a Toll/Interleukin receptor domain. All four clones representing novel candidates of gene products from the family contain a novel highly conserved cross-species domain. Clones similar to growth factor-related products included transforming growth factor beta-inducible early growth response protein 2 (TIEG-2), TGFbeta-induced factor 2, integrin beta-like 1, latent TGF-binding protein 4S, and FGF receptor 4B. We performed a detailed sequence analysis of the candidate novel genes to elucidate their likely functional properties.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss ( up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.
Resumo:
Ecdysteroids regulate many aspects of insect physiology after binding to a heterodimer composed of the nuclear hormone receptor proteins ecdysone receptor (EcR) and ultraspiracle (Use). Several lines of evidence have suggested that the latter also plays important roles in mediating the action of juvenile hormone (JH) and, thus, integrates signaling by the two morphogenetic hormones. By using an RNAi approach, we show here that Us p participates in the mechanism that regulates the progression of pupal development in Apis mellifera, as indicated by the observed pupal developmental delay in usp knocked-down bees. Knock-down experiments also suggest that the expression of regulatory genes such as ftz transcription factor 1 (ftz-f1) and juvenile hormone esterase (jhe) depend on Usp. Vitellogenin (vg), the gene coding the main yolk protein in honeybees, does not seem to be under Usp regulation, thus suggesting that the previously observed induction of vg expression by JH during the last stages of pupal development is mediated by yet unknown transcription factor complexes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have measured nucleotide variation in the CLOCK/CYCLE heterodimer inhibition domain (CCID) of the clock X-linked gene period in seven species belonging to the Drosophila buzzatii cluster, namely D. buzzatii, Drosophila koepferae, Drosophila antonietae, Drosophila serido, Drosophila gouveai, Drosophila seriema and Drosophila borborema. We detected that the purifying selection is the main force driving the sequence evolution in period, in agreement with the important role of CCID in clock machinery. Our survey revealed that period provides valuable phylogenetic information that allowed to resolve phylogenetic relationships among D. gouveai, D. borborema and D. seriema, which composed a polytomic clade in preliminary studies. The analysis of patterns of intraspecific variation revealed two different lineages of period in D. koepferae, probably reflecting introgressive hybridization from D. buzzatii, in concordance with previous molecular data.
Resumo:
Epoxide hydrolases are multifunctional enzymes that are best known in insects for their role in juvenile hormone (JH) degradation. Enzymes involved in JH catabolism can play major roles during metamorphosis and reproduction, such as the JH epoxide hydrolase (JHEH), which degrades JH through hydration of the epoxide moiety to form JH diol, and JH esterase (JHE), which hydrolyzes the methyl ester to produce JH acid. In the honey bee, JH has been co-opted for additional functions, mainly in caste differentiation and in age-related behavioral development of workers, where the activity of both enzymes could be important for JH titer regulation. Similarity searches for jheh candidate genes in the honey bee genome revealed a single Amjheh gene. Sequence analysis, quantification of Amjheh transcript levels and Western blot assays using an AmJHEH-specific antibody generated during this study revealed that the AmJHEH found in the fat body shares features with the microsomal JHEHs from several insect species. Using a partition assay we demonstrated that AmJHEH has a negligible role in JH degradation, which, in the honey bee, is thus performed primarily by JHE. High AmJHEH levels in larvae and adults were related to the ingestion of high loads of lipids, suggesting that AmJHEH has a role in dietary lipid catabolism. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, Sao Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 165 rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 165 rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hexamerins and prophenoloxidases (PPOs) proteins are members of the arthropod-haemocyanin superfamily. In contrast to haemocyanin and PPO, hexamerins do not bind oxygen, but mainly play a role as storage proteins that supply amino acids for insect metamorphosis. We identified seven genes encoding hexamerins, three encoding PPOs, and one hexamerin pseudogene in the genome of the parasitoid wasp Nasonia vitripennis. A phylogenetic analysis of hexamerins and PPOs from this wasp and related proteins from other insect orders suggests an essentially order-specific radiation of hexamerins. Temporal and spatial transcriptional profiles of N. vitripennis hexamerins suggest that they have physiological functions other than metamorphosis, which are arguably coupled with its lifestyle.