964 resultados para Deuteric fluids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe here a novel method of generating large volumetric heating in a liquid. The method uses the principle of ohmic heating of the liquid, rendered electrically conducting by suitable additives if necessary. Electrolysis is prevented by the use of high frequency alternating voltage and chemically treated electrodes. The technique is demonstrated by producing substantial heating in an initially neutral jet of water. Simple flow visualisation studies, made by adding dye to the jet, show marked changes in the growth and development of the jet with heat addition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady laminar mixed convection boundary layer flow of a thermomicropolar fluid over a long thin vertical cylinder has been studied when the free stream velocity varies with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite difference scheme in combination with the quasilinearization technique. The results show that the buoyancy, curvature and suction parameters, in general, enhance the skin friction, heat transfer and gradient of microrotation, but the effect of injection is just opposite. The skin friction and heat transfer for the micropolar fluid are considerably less than those for the Newtonian fluids. The effect of microrotation parameter is appreciable only on the microrotation gradient. The effect of the Prandtl number is appreciable on the skin friction, heat transfer and gradient of microtation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 x 10(3) to 6.5 x 10(5) to study the effect of natural ventilation on the boundary layer separation and near-wake Vortex shedding characteristics. In the subcritical range of Re (<2 x 10(5)), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 x 10(5)), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report numerical results for the phase diagram in the density-disorder plane of a hard-sphere system in the presence of quenched, random, pinning disorder. Local minima of a discretized version of the Ramakrishnan-Yussouff free energy functional are located numerically and their relative stability is studied as a function of the density and the strength of disorder. Regions in the phase diagram corresponding to liquid, glassy, and nearly crystalline states are mapped out, and the nature of the transitions is determined. The liquid to glass transition changes from first to second order as the strength of the disorder is increased. For weak disorder, the system undergoes a first-order crystallization transition as the density is increased. Beyond a critical value of the disorder strength, this transition is replaced by a continuous glass transition. Our numerical results are compared with those of analytical work on the same system. Implications of our results for the field-temperature phase diagram of type-II superconductors are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drop formation from single nozzles under pulsed flow conditions in non-Newtonian fluids following the power law model has been studied. An existing model has been modified to explain the experimental data. The flow conditions employed correspond to the mixer—settler type of operation in pulsed sieve-plate extraction columns. The modified model predicts the drop sizes satisfactorily. It has been found that consideration of non-Newtonian behaviour is important at low pulse intensities and its significance decreases with increasing intensity of pulsation. Further, the proposed model for single orifices has been tested to predict the sizes of drops formed from a sieve-plate distributor having four holes, and has been found to predict the sizes fairly well in the absence of coalescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a novel nanoparticle tracking based interface microrheology technique to perform in situ studies on confined complex fluids. To demonstrate the power of this technique, we show, for the first time, how in situ glass formation in polymers confined at air-water interface can be directly probed by monitoring variation of the mean square displacement of embedded nanoparticles as a function of surface density. We have further quantified the appearance of dynamic heterogeneity and hence vitrification in polymethyl methacrylate monolayers above a certain surface density, through the variation of non-Gaussian parameter of the probes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3471584].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogens the female sex hormones have numerous biological actions. Estradiol is the most abundant estrogen in women before menopause. It influences the development, maturation and function of the female reproductive tract. It also plays a role in mammary cancer. Accordingly determinations of estradiol level in body fluids assist in the evaluation of ovarian function and diagnosis for malignancies. Estriol is the primary estrogen in pregnant women and secreted from the fetoplacental unit. Measurement of estriol in maternal body fluids is the basis of fetoplacental monitoring test. Concentration of estrogens in body fluids is determined by immunoassay. Accuracy of this measurement depends on the availability of a specific antibody. As estrogens are not antigenic, their derivatives (haptens) are coupled with a carrier and this hapten-protein conjugate is used to generate antibodies. Specificity of the generated antibody largely depends on the structure of hapten. Therefore the synthesis of a hapten with a right structure is crucial for the accurate measurement of a steroid. We have synthesised new haptens for estradiol and estriol by adding an alkyl or alkoxy side chain at the C-7 of estrane skeleton. The side chains carry a terminal amino group, which can be used for conjugation with a carrier molecule. Estrogens and their biosynthetic precursor androgens both exist as fatty acid esters. They are known to act as hormone storage but their physiological role is not completely known yet. Our collaborator is studying their effect in cardiovascular diseases. We synthesised fatty acid ester derivatives of several steroids in high yield by a very rapid procedure (in 1 min) under microwave irradiation in an ionic liquid (IL). An expedient regioselective hydrolysis at C-3 of estradiol diesters is also reported. 8-Isoestrogens are compounds of pharmaceutical interests, their synthesis, structure, conformation and biological activity studies are ongoing. 7-Hydroxy-8-isoestradiol and 7-alkyl ether of it were synthesised as well. During this study we have developed a selective O-debenzylation method. A mild route for selective removal of benzylic protection on phenol in presence of benzyl protected alcohol was explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sanukitoid series intrusions can be found throughout the Archean Karelian Province of the Fennoscandian shield. All sanukitoids share the same controversial elemental characteristics: they have high content of incompatible elements such as K, Ba, and Sr as well as high content of the compatible elements Mg, Cr, and Ni, and high Mg#. This composition is explained by an enriched mantle wedge origin in a Neoarchean subduction setting. This study concentrates on sanukitoid intrusions and tonalite-trondhjemite-granodiorite series (TTGs) from Finnish part of the Karelian Province. The collected rock samples have been studied in the field and under microscope as well as for their whole-rock (including isotopes) and mineral compositions. The new data together with previously published analyses help us to better understand the petrogenesis, tectonic setting and reworking of the Archean rock units. TTGs from the Karelian Province form a voluminous series of granitoids and reworked migmatites. This study divides TTG series into two subgroups based on their elemental composition: low-HREE (heavy rare earth element) TTGs and high-HREE TTGs indicating pressure differences in their source. Sanukitoid series is a minor, divergent group of intrusions. These intrusions are variable sized, and the texture varies from even-grained to K-feldspar porphyritic. The elemental composition differentiates sanukitoids from more voluminous TTG groups, the SiO2 in sanukitoids varies to include series of gabbro, diorite, and granodiorite. U Pb age determinations from sanukitoid series show temporally limited emplacement between ~ 2745 2715 Ma after the main crust forming period in the area. Hafnium, neodymium, common lead, and oxygene isotopes indicate well homogenized characteristics. Recycled crust has made a variable, yet minor, contribution to sanukitoids, as evidenced by oxygene isotopes and inherited zircon cores. A proposed tectonic setting for the formation of the sanukitoid series is slab breakoff of oceanic lithosphere in subduction setting, with sanukitoids deriving from an enriched mantle wedge. The proposed setting explains some of the peculiar features of sanukitoids, such as their temporally limited occurrence and controversial elemental composition. Sanukitoids would occur after cessation of the regional growth of Archean crust, and they could be derived from mantle wedge previously enriched by melts and fluids from oceanic crust and sediments. A subsequent event during the Paleoproterozoic Svecofennian orogeny at ~1.9 Ga affected the appearance and microstructures of the rocks as well as caused redistribution of lead between minerals and whole rock. However, the deformation was not able to obliterate the original geochemical characteristics of these sanukitoids.