819 resultados para Dependency strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strength development of mortars containing ground granulated blast-furnace slag (ggbs) and portland cement was investigated. Variables were the level of ggbs in the binder, water-binder ratio and curing temperature. All mortars gain strength more rapidly at higher temperatures and have a lower calculated ultimate strength. The early age strength is much more sensitive to temperature for higher levels of ground granulated blast-furnace slag. The calculated ultimate strength is affected to a similar degree for all ggbs levels and water-binder ratios, with only the curing temperature having a significant effect. Apparent activation energies were determined according to ASTM C1074 and were found to vary approximately linearly with ggbs level from 34 kJ/mol for portland cement mortars to around 60 kJ/mol for mortars containing 70% ggbs. The water-binder ratio appears to have little or no effect oil the apparent activation energy. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full-scale seven-storey in-situ advanced reinforced concrete building frame was constructed in the Building Research Establishment's Cardington laboratory encompassing a range of different concrete mixes and construction techniques. This provided an opportunity to use in-situ non-destructive test methods, namely Lok and CAPO tests, on a systematic basis during the construction of the building. They were used in conjunction with both standard and temperature-matched cube specimens to assess their practicality and their individual capabilities under field conditions. Results have been analysed and presented to enable comparisons of the performance of the individual test methods employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of incorporating pulverized fuel ash (PFA) and ground granulated blastfurnace slag (ggbs) on the workability (slump), adiabatic temperature rise during hydration and long-term (up to 570 days) strength of high-strength concretes have been measured. Binary (PFA/ggbs and Portland cement) and ternary (PFA/ggbs plus microsilica and Portland cement) blends at water-binder ratios from 0.38 to 0.20 have been tested. The results show broadly similar effects to those in lower strength concrete, although of differing magnitude in some cases. Some potential advantages of ternary blends for optimization of properties have been demonstrated.