956 resultados para Databases on Properties of Inorganic Materials
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.
Resumo:
Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.
Resumo:
Spectroscopic properties of ytterbium-doped tellurile glasses with different compositions are reported. Results of linear refractive index, absorption and emission spectra, and fluorescence lifetimes are presented. The studied samples present high refractive index (∼2.0) and large transmission window (380-6000nm). Absorption and emission cross-sections are calculated as well as the minimum pump laser intensity. The results are compared with the values of other laser materials, in order to investigate applications as laser media in the infrared region.
Resumo:
Weight reduction and improved damage tolerance characteristics were the prime drivers to develop new family of materials for the aerospace/ aeronautical industry. Aiming this objective, a new lightweight Fiber/ Metal Laminate (FML) has been developed. The combination of metal and polymer composite laminates can create a synergistic effect on many properties. The mechanical properties of FML shows improvements over the properties of both aluminum alloys and composite materials individually. Due to their excellent properties, FML are being used as fuselage skin structures of the next generation commercial aircrafts. One of the advantages of FML when compared with conventional carbon fiber/epoxy composites is the low moisture absorption. The moisture absorption in FML composites is slower when compared with polymer composites, even under the relatively harsh conditions, due to the barrier of the aluminum outer layers. Due to this favorable atmosphere, recently big companies such as EMBRAER, Aerospatiale, Boing, Airbus, and so one, starting to work with this kind of materials as an alternative to save money and to guarantee the security of their aircrafts.
Resumo:
The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in rutheno-cuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behavior are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. The first treatment results in the immediate formation of Sr2GdRuO 6. Using the CuO composition as a precursor, we produced Ru-1212. To turn it metallic and superconductor, besides the previous treatment, a final sinterization is carried out in oxygen flow for several days. Three Ru-1212 samples were produced by varying the last sinterization time (two, four, and six days under oxygen flow). Through measurements of x-ray diffraction, scanning electron microscopy, differential thermal analysis, magnetic susceptibility and mechanical spectroscopy, it was studied the influence of the treatments under oxygen atmosphere on the structural and superconducting properties of the material.
Resumo:
Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.
Resumo:
This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Resumo:
The aim of this study is to evaluate the flexural resistance of three types of restorative materials: compomer (Freedom), resin-modified glass-ionomer (Vitremer) and composite resin (Esthet-X), observing whether the application of bleaching agent can cause alterations of their flexural properties. Sixty samples were made using a 10 x 1 x 1 mm brass mold, and divided into three groups: G1- Freedom (SDI); G2- Vitremer (3M ESPE); G3- Esthet-X (Dentsply). On half of the samples of each group (10 samples) the bleaching treatment was applied and the other half used as control, was stored in distilled water at a temperature of 37 degrees C. Whiteness HP Maxx bleaching system was applied on the sample surface following the manufacturer's recommendations, simulating the bleaching treatment at the clinic. After this period, a flexural strength (three-point bending) test was conducted using (EMIC DL 1000) machine until the samples fractured. The data were submitted to ANOVA and Tukey tests. Of the restorative materials studied, G3-(87.24 +/- 31.40 MPa) presented the highest flexural strength, followed by G1-(61.67 +/- 21.32 MPa) and G2-(61.67 +/- 21.32 MPa). There was a statistical difference in flexural strength after the bleaching treatment. It was concluded that the use of a beaching agent can promote significant alteration of the flexural strength of these restorative materials.
Resumo:
Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400°C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400°C, which can be applied in microwave circuits as dielectric resonators. © (2010) Trans Tech Publications.
Resumo:
Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P <.05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. Copyright © 2012 American Association of Endodontists.