970 resultados para Data Visualization, trasporti pubblici, anticipi, ritardi
Resumo:
Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Resumo:
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.
Resumo:
Mestrado em Contabilidade e Gestão das Instituições Financeiras
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
Cooperating objects (COs) is a recently coined term used to signify the convergence of classical embedded computer systems, wireless sensor networks and robotics and control. We present essential elements of a reference architecture for scalable data processing for the CO paradigm.
Resumo:
Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems
Resumo:
Environment monitoring has an important role in occupational exposure assessment. However, due to several factors is done with insufficient frequency and normally don´t give the necessary information to choose the most adequate safety measures to avoid or control exposure. Identifying all the tasks developed in each workplace and conducting a task-based exposure assessment help to refine the exposure characterization and reduce assessment errors. A task-based assessment can provide also a better evaluation of exposure variability, instead of assessing personal exposures using continuous 8-hour time weighted average measurements. Health effects related with exposure to particles have mainly been investigated with mass-measuring instruments or gravimetric analysis. However, more recently, there are some studies that support that size distribution and particle number concentration may have advantages over particle mass concentration for assessing the health effects of airborne particles. Several exposure assessments were performed in different occupational settings (bakery, grill house, cork industry and horse stable) and were applied these two resources: task-based exposure assessment and particle number concentration by size. The results showed interesting results: task-based approach applied permitted to identify the tasks with higher exposure to the smaller particles (0.3 μm) in the different occupational settings. The data obtained allow more concrete and effective risk assessment and the identification of priorities for safety investments.
Resumo:
XVIII Jornadas de Paleontología, 2002
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
Introduction: multimodality environment; requirement for greater understanding of the imaging technologies used, the limitations of these technologies, and how to best interpret the results; dose optimization; introduction of new techniques; current practice and best practice; incidental findings, in low-dose CT images obtained as part of the hybrid imaging process, are an increasing phenomenon with advancing CT technology; resultant ethical and medico-legal dilemmas; understanding limitations of these procedures important when reporting images and recommending follow-up; free-response observer performance study was used to evaluate lesion detection in low-dose CT images obtained during attenuation correction acquisitions for myocardial perfusion imaging, on two hybrid imaging systems.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier.