775 resultados para Data Mining, Rough Sets, Multi-Dimension, Association Rules, Constraint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barotrauma is identified as one of the leading diseases in Ventilated Patients. This type of problem is most common in the Intensive Care Units. In order to prevent this problem the use of Data Mining (DM) can be useful for predicting their occurrence. The main goal is to predict the occurence of Barotrauma in order to support the health professionals taking necessary precautions. In a first step intensivists identified the Plateau Pressure values as a possible cause of Barotrauma. Through this study DM models (classification) where induced for predicting the Plateau Pressure class (>=30 cm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia de Sistemas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctoral Thesis in Information Systems and Technologies Area of Information Systems and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays in healthcare, the Clinical Decision Support Systems are used in order to help health professionals to take an evidence-based decision. An example is the Clinical Recommendation Systems. In this sense, it was developed and implemented in Centro Hospitalar do Porto a pre-triage system in order to group the patients on two levels (urgent or outpatient). However, although this system is calibrated and specific to the urgency of obstetrics and gynaecology, it does not meet all clinical requirements by the general department of the Portuguese HealthCare (Direção Geral de Saúde). The main requirement is the need of having priority triage system characterized by five levels. Thus some studies have been conducted with the aim of presenting a methodology able to evolve the pre-triage system on a Clinical Recommendation System with five levels. After some tests (using data mining and simulation techniques), it has been validated the possibility of transformation the pre-triage system in a Clinical Recommendation System in the obstetric context. This paper presents an overview of the Clinical Recommendation System for obstetric triage, the model developed and the main results achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Habil.-Schr., 2003

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2008