784 resultados para DUAL-CURED COMPOSITES
Resumo:
In this study, dual-hop channel state information-assisted amplify-and-forward (AF) cooperative systems in the presence of in-phase and quadrature-phase (I/Q) imbalance, which refers to the mismatch between components in the I and Q branches, are investigated. First, the authors analyse the performance of the considered AF cooperative protocol without compensation for the I/Q imbalance as the benchmark. Then, a compensation algorithm for the I/Q imbalance is proposed, which makes use of the received signals at the destination, from the source and the relay nodes, together with their conjugations to detect the transmitted signal. Moreover, the authors study the considered AF cooperative system implemented with the opportunistic relay selection and the proposed compensation mechanism for the I/Q imbalance. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability, which is derived by considering transmission in a Rayleigh fading environment. Numerical results are provided and show that the proposed compensation algorithm can efficiently mitigate the effect of the I/Q imbalance. On the other hand, it is observed that the AF cooperative system with opportunistic relay selection acquires a performance gain beyond that without relay selection.
Resumo:
This paper considers the longer-term viability of the internationalization and success of Indian multinational enterprises (MNEs). We apply the ‘dual economy’ concept (Lewis, Manch Sch 22(2):139–191, 1954) to reconcile the contradictions of the typical emerging economy, where a ‘modern’ knowledge-intensive economy exists alongside a ‘traditional’ resource-intensive economy. Each type of economy generates firms with different types of ownership advantages, and hence different types of MNEs and internationalisation patterns. We also highlight the vulnerabilities of a growth-by-acquisitions approach. The potential for Indian MNEs to grow requires an understanding of India’s dual economy and the constraints from the home country’s location advantages, particularly those in its knowledge infrastructure.
Resumo:
We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5–150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.
Resumo:
Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.
Resumo:
Purpose – Outsourced information technology (IT) workers establish two different employment relationships: one with the outsourcing company that hires them and another with the client organization where they work daily. The attitudes that an employee has towards both organisations may be influenced by the interpretations or attributions that employees make about the reasons behind the human resource (HR) management practices implemented by the outsourcing company. This paper aims to propose that commitment‐focused HR attributions are positively and control‐focused HR attributions are negatively related to the affective commitment to the client organization, through the affective commitment to the outsourcing company. Design/methodology/approach – These hypotheses were tested with a sample of 158 highly skilled outsourced employees from the IT sector. Data were analyzed with structural equation modeling (SEM). Findings – The paper's hypotheses were supported. It can conclude that, if an employee interprets the HR practices as part of a commitment‐focused strategy of the outsourcing company, it has clear attitudinal benefits. The study found that the relationship between HR attributions and the commitment to the client organization is mediated by the commitment to the outsourcing company. Practical implications – These findings hint at the critical role of outsourcing companies in managing the careers of these highly marketable employees. Originality/value – This paper is the first to apply the concept of HR attributions to contingent employment literature in general and to outsourced IT workers in particular.
Resumo:
Industrial robotic manipulators can be found in most factories today. Their tasks are accomplished through actively moving, placing and assembling parts. This movement is facilitated by actuators that apply a torque in response to a command signal. The presence of friction and possibly backlash have instigated the development of sophisticated compensation and control methods in order to achieve the desired performance may that be accurate motion tracking, fast movement or in fact contact with the environment. This thesis presents a dual drive actuator design that is capable of physically linearising friction and hence eliminating the need for complex compensation algorithms. A number of mathematical models are derived that allow for the simulation of the actuator dynamics. The actuator may be constructed using geared dc motors, in which case the benefits of torque magnification is retained whilst the increased non-linear friction effects are also linearised. An additional benefit of the actuator is the high quality, low latency output position signal provided by the differencing of the two drive positions. Due to this and the linearised nature of friction, the actuator is well suited for low velocity, stop-start applications, micro-manipulation and even in hard-contact tasks. There are, however, disadvantages to its design. When idle, the device uses power whilst many other, single drive actuators do not. Also the complexity of the models mean that parameterisation is difficult. Management of start-up conditions still pose a challenge.
Resumo:
Customers will not continue to pay for a service if it is perceived to be of poor quality, and/or of no value. With a paradigm shift towards business dependence on service orientated IS solutions [1], it is critical that alignment exists between service definition, delivery, and customer expectation, businesses are to ensure customer satisfaction. Services, and micro-service development, offer businesses a flexible structure for solution innovation, however, constant changes in technology, business and societal expectations means an iterative analysis solution is required to i) determine whether provider services adequately meet customer segment needs and expectations, and ii) to help guide business service innovation and development. In this paper, by incorporating multiple models, we propose a series of steps to help identify and prioritise service gaps. Moreover, the authors propose the Dual Semiosis Analysis Model, i.e. a tool that highlights where within the symbiotic customer / provider semiosis process, requirements misinterpretation, and/or service provision deficiencies occur. This paper offers the reader a powerful customer-centric tool, designed to help business managers highlight both what services are critical to customer quality perception, and where future innovation
Resumo:
Jarrah (Eucalyptus marginata Donn ex Sm.) plants, like many other eucalypts, can form symbiotic associations with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To study this tripartite relationship we developed a novel nurse-pot system to allow us to investigate the extent and temporal colonisation dynamics of jarrah by two AM species (Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. and Scutellospora calospora Nicol. & Gerd.) and two putative ECM species (Austroboletus occidentalis Watling & N.M. Greg. and Scleroderma sp.) and their potential effects on jarrah growth and nutrition. Our nurse-pot system, using jarrah as both the nurse plant and test plant, was developed to establish extraradical hyphal networks of both AM and ECM fungi that act as single or dual inoculum for test plants. Mycorrhizal colonisation was described and quantified, and growth and nutritional effects measured and analysed. Mycorrhizal colonisation increased with time for the test seedlings exposed to hyphae networks from S. calospora and Scleroderma sp. The nurse-pot system was effective at initiating colonisation of functioning AM or (putative) ECM systems separately but the ECM symbiosis was inhibited where a dual AM + ECM inoculum (R. irregularis and Scleroderma sp.) was present. The presence of S. calospora, A. occidentalis and Scleroderma sp. individually significantly increased the shoot biomass of seedlings compared with non-mycorrhizal controls. The two AM isolates had different physiological effects on jarrah plants. S. calospora improved growth and micronutrient uptake of jarrah seedlings whereas no positive response was observed with R. irregularis. In addition, as an interesting observation, the non-responsive AM fungus R. irregularis suppressed the ECM symbiosis in dually inoculated plants where ECM structures, positive growth response and nutritional effects were absent. When inoculated individually, ECM isolates dominated the growth response and uptake of P and other nutrients in this dual symbiotic plant. Despite the positive growth response in the A. occidentalis treatment, ECM structures were not observed in either nurse or test seedlings. From the effects of A. occidentalis on jarrah we hypothesise that this fungus forms a functional mycorrhizal-type partnership even without forming archetypal structures in and on the root
Resumo:
In this brief note we prove orbifold equivalence between two potentials described by strangely dual exceptional unimodular singularities of type K14 and Q10 in two different ways. The matrix factorizations proving the orbifold equivalence give rise to equations whose solutions are permuted by Galois groups which differ for different expressions of the same singularity.
Resumo:
A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.
Resumo:
Background: Physical and bioceramic incorporation surface treatments at the nanometer scale showed higher means of bone-to-implant contact (BIC) and torque values compared with surface topography at the micrometer scale; however, the literature concerning the effect of nanometer scale parameters is sparse. Purpose: The aim of this study was to evaluate the influence of two different implant surfaces on the percentage bone-to-implant contact (BIC%) and bone osteocyte density in the human posterior maxilla after 2 months of unloaded healing. Materials and Methods: The implants utilized presented dual acid-etched (DAE) surface and a bioceramic molecular impregnated treatment (Ossean(R), Intra-Lock International, Boca Raton, FL, USA) serving as control and test, respectively. Ten subjects (59 1 9 years of age) received two implants (one of each surface) during conventional implant surgery in the posterior maxilla. After the non-loaded period of 2 months, the implants and the surrounding tissue were removed by means of a trephine and were non-decalcified processed for ground sectioning and analysis of BIC%, bone density in threaded area (BA%), and osteocyte index (Oi). Results: Two DAE implants were found to be clinically unstable at time of retrieval. Histometric evaluation showed significantly higher BIC% and Oi for the test compared to the control surface (p < .05), and that BA% was not significantly different between groups. Wilcoxon matched pairs test was used to compare the differences of histomorphometric variables between implant surfaces. The significance test was conducted at a 5% level of significance. Conclusion: The histological data suggest that the bioceramic molecular impregnated surface-treated implants positively modulated bone healing at early implantation times compared to the DAE surface.
Resumo:
The objective of the present work is to evaluate the effects of the surface properties of unrefined eucalyptus pulp fibres concerning their performance in cement-based composites. The influence of the fibre surface on the microstructure of fibre-cement composites was evaluated after accelerated ageing cycles, which simulate natural weathering. The surface of unbleached pulp is a thin layer that is rich in cellulose, lignin, hemicelluloses, and extractives. Such a layer acts as a physical and chemical barrier to the penetration of low molecular components of cement. The unbleached fibres are less hydrophilic than the bleached ones. Bleaching removes the amorphous lignin and extractives from the surface and renders it more permeable to liquids. Atomic force microscopy (AFM) helps in understanding the fibre-cement interface. Bleaching improved the fibre- cement interfacial bonding, whereas fibres in the unbleached pulp were less susceptible to the re-precipitation of cement hydration products into the fibre cavities (lumens). Therefore, unbleached fibres can improve the long-term performance of the fibre-cement composite owing to their delayed mineralization.
Resumo:
This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing. (C) 2009 Elsevier Ltd. All rights reserved.