709 resultados para DISSECTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CIITA is a master transactivator of the major histocompatibility complex class II genes, which are involved in antigen presentation. Defects in CIITA result in fatal immunodeficiencies. CIITA activation is also the control point for the induction of major histocompatibility complex class II and associated genes by interferon-γ, but CIITA does not bind directly to DNA. Expression of CIITA in G3A cells, which lack endogenous CIITA, followed by in vivo genomic footprinting, now reveals that CIITA is required for the assembly of transcription factor complexes on the promoters of this gene family, including DRA, Ii, and DMB. CIITA-dependent promoter assembly occurs in interferon-γ-inducible cell types, but not in B lymphocytes. Dissection of the CIITA protein indicates that transactivation and promoter loading are inseparable and reveal a requirement for a GTP binding motif. These findings suggest that CIITA may be a new class of transactivator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron regulatory protein-1 (IRP-1), a central cytoplasmic regulator of cellular iron metabolism, is rapidly activated by oxidative stress to bind to mRNA iron-responsive elements. We have reconstituted the response of IRP-1 to extracellular H2O2 in a system derived from murine B6 fibroblasts permeabilized with streptolysin-O. This procedure allows separation of the cytosol from the remainder of the cells (cell pellet). IRP-1 in the cytosolic fraction fails to be directly activated by addition of H2O2. IRP-1 activation requires the presence of a nonsoluble, possibly membrane-associated component in the cell pellet. The streptolysin-O-based in vitro system faithfully recapitulates characteristic hallmarks of IRP-1 activation by H2O2 in intact cells. We show that the H2O2-mediated activation of IRP-1 is temperature dependent and sensitive to treatment with calf intestinal alkaline phosphatase (CIAP). Although IRP-1 activation is unaffected by addition of excess ATP or GTP to this in vitro system, it is negatively affected by the nonhydrolyzable nucleotide analogs adenylyl-imidodiphosphate and guanylyl-imidophosphate and completely blocked by ATP-γS and GTP-γS. The in vitro reconstitution of this oxidative stress-induced pathway has opened a different avenue for the biochemical dissection of the regulation of mammalian iron metabolism by oxidative stress. Our data show that H2O2 must be sensed to stimulate a pathway to activate IRP-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular processes are mediated by complex networks of molecular interactions. Dissection of their role most commonly is achieved by using genetic mutations that alter, for example, protein–protein interactions. Small molecules that accomplish the same result would provide a powerful complement to the genetic approach, but it generally is believed that such molecules are rare. There are several natural products, however, that illustrate the feasibility of this approach. Split-pool synthesis now provides a simple mechanical means to prepare vast numbers of complex, even natural product-like, molecules individually attached to cell-sized polymer beads. Here, we describe a genetic system compatible with split-pool synthesis that allows the detection of cell-permeable, small molecule inhibitors of protein–protein interactions in 100- to 200-nl cell culture droplets, prepared by a recently described technique that arrays large numbers of such droplets. These “nanodroplets” contain defined media, cells, and one or more beads containing ≈100 pmol of a photoreleasable small molecule and a controlled number of cells. The engineered Saccharomyces cerevisiae cells used in this study express two interacting proteins after induction with galactose whose interaction results in cell death in the presence of 5-fluoroorotic acid (inducible reverse two-hybrid assay). Disruption of the interaction by a small molecule allows growth, and the small molecule can be introduced into the system hours before induction of the toxic interaction. We demonstrate that the interaction between the activin receptor R1 and the immunophilin protein FKBP12 can be disrupted by the small molecule FK506 at nanomolar concentrations in nanodroplets. This system should provide a general method for selecting cell-permeable ligands that can be used to study the relevance of protein–protein interactions in living cells or organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the α- or β-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (α-carotene branch), zeaxanthin, and antheraxanthin (β-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), α-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell recognition of autoantigens is critical to progressive immune-mediated destruction of islet cells, which leads to autoimmune diabetes. We identified a naturally presented autoantigen from the human islet antigen glutamic acid decarboxylase, 65-kDa isoform (GAD65), by using a combination of chromatography and mass spectrometry of peptides bound by the type I diabetes (insulin-dependent diabetes mellitus, IDDM)-associated HLA-DR4 molecule. Peptides encompassing this epitope-stimulated GAD65-specific T cells from diabetic patients and a DR4-positive individual at high risk for developing IDDM. T cell responses were antagonized by altered peptide ligands containing single amino acid modifications. This direct identification and manipulation of GAD65 epitope recognition provides an approach toward dissection of the complex CD4+ T cell response in IDDM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p13suc1 has two native states, a monomer and a domain-swapped dimer. We show that their folding pathways are connected by the denatured state, which introduces a kinetic barrier between monomer and dimer under native conditions. The barrier is lowered under conditions that speed up unfolding, thereby allowing, to our knowledge for the first time, a quantitative dissection of the energetics of domain swapping. The monomer–dimer equilibrium is controlled by two conserved prolines in the hinge loop that connects the exchanging domains. These two residues exploit backbone strain to specifically direct dimer formation while preventing higher-order oligomerization. Thus, the loop acts as a loaded molecular spring that releases tension in the monomer by adopting its alternative conformation in the dimer. There is an excellent correlation between domain swapping and aggregation, suggesting they share a common mechanism. These insights have allowed us to redesign the domain-swapping propensity of suc1 from a fully monomeric to a fully dimeric protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological bases of learning and memory are being revealed today with a wide array of molecular approaches, most of which entail the analysis of dysfunction produced by gene disruptions. This perspective derives both from early “genetic dissections” of learning in mutant Drosophila by Seymour Benzer and colleagues and from earlier behavior-genetic analyses of learning and in Diptera by Jerry Hirsch and coworkers. Three quantitative-genetic insights derived from these latter studies serve as guiding principles for the former. First, interacting polygenes underlie complex traits. Consequently, learning/memory defects associated with single-gene mutants can be quantified accurately only in equilibrated, heterogeneous genetic backgrounds. Second, complex behavioral responses will be composed of genetically distinct functional components. Thus, genetic dissection of complex traits into specific biobehavioral properties is likely. Finally, disruptions of genes involved with learning/memory are likely to have pleiotropic effects. As a result, task-relevant sensorimotor responses required for normal learning must be assessed carefully to interpret performance in learning/memory experiments. In addition, more specific conclusions will be obtained from reverse-genetic experiments, in which gene disruptions are restricted in time and/or space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wnt1 signaling has been implicated as one factor involved in neural crest-derived melanocyte (NC-M) development. Mice deficient for both Wnt1 and Wnt3a have a marked deficiency in trunk neural crest derivatives including NC-Ms. We have used cell lineage-directed gene targeting of Wnt signaling genes to examine the effects of Wnt signaling in mouse neural crest development. Gene expression was directed to cell lineages by infection with subgroup A avian leukosis virus vectors in lines of transgenic mice that express the retrovirus receptor tv-a. Transgenic mice with tva in either nestin-expressing neural precursor cells (line Ntva) or dopachrome tautomerase (DCT)-expressing melanoblasts (line DCTtva) were analyzed. We overstimulated Wnt signaling in two ways: directed gene transfer of Wnt1 to Ntva+ cells and transfer of β-catenin to DCTtva+ NC-M precursor cells. In both methods, NC-M expansion and differentiation were effected. Significant increases were observed in the number of NC-Ms [melanin+ and tyrosinase-related protein 1 (TYRP1)+ cells], the differentiation of melanin− TYRP1+ cells to melanin+ TYRP1+ NC-Ms, and the intensity of pigmentation per NC-M. These data are consistent with Wnt1 signaling being involved in both expansion and differentiation of migrating NC-Ms in the developing mouse embryo. The use of lineage-directed gene targeting will allow the dissection of signaling molecules involved in NC development and is adaptable to other mammalian developmental systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear-encoded precursors of chloroplast proteins are synthesized with an amino-terminal cleavable transit sequence, which contains the information for chloroplastic targeting. To determine which regions of the transit sequence are most important for its function, the chloroplast uptake and processing of a full-length ferredoxin precursor and four mutants with deletions in adjacent regions of the transit sequence were analyzed. Arabidopsis was used as an experimental system for both in vitro and in vivo import. The full-length wild-type precursor translocated efficiently into isolated Arabidopsis chloroplasts, and upon expression in transgenic Arabidopsis plants only mature-sized protein was detected, which was localized inside the chloroplast. None of the deletion mutants was imported in vitro. By analyzing transgenic plants, more subtle effects on import were observed. The most N-terminal deletion resulted in a fully defective transit sequence. Two deletions in the middle region of the transit sequence allowed translocation into the chloroplast, although with reduced efficiencies. One deletion in this region strongly reduced mature protein accumulation in older plants. The most C-terminal deletion was translocated but resulted in defective processing. These results allow the dissection of the transit sequence into separate functional regions and give an in vivo basis for a domain-like structure of the ferredoxin transit sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auxotrophic mutants have played an important role in the genetic dissection of biosynthetic pathways in microorganisms. Equivalent mutants have been more difficult to identify in plants. The bio1 auxotroph of Arabidopsis thaliana was shown previously to be defective in the synthesis of the biotin precursor 7,8-diaminopelargonic acid. A second biotin auxotroph of A. thaliana has now been identified. Arrested embryos from this bio2 mutant are defective in the final step of biotin synthesis, the conversion of dethiobiotin to biotin. This enzymatic reaction, catalyzed by the bioB product (biotin synthase) in Escherichia coli, has been studied extensively in plants and bacteria because it involves the unusual addition of sulfur to form a thiophene ring. Three lines of evidence indicate that bio2 is defective in biotin synthase production: mutant embryos are rescued by biotin but not dethiobiotin, the mutant allele maps to the same chromosomal location as the cloned biotin synthase gene, and gel-blot hybridizations and polymerase chain reaction amplifications revealed that homozygous mutant plants contain a deletion spanning the entire BIO2-coding region. Here we describe how the isolation and characterization of this null allele have provided valuable insights into biotin synthesis, auxotrophy, and gene redundancy in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now well understood that chromatin structure is perturbed in the neighborhood of expressed genes. This is most obvious in the neighborhood of promoters and enhancers, where hypersensitivity to nucleases marks sites that no longer carry canonical nucleosomes, and to which transcription factors bind. To study the relationship between transcription factor binding and the generation of these hypersensitive regions, we mutated individual cis-acting regulatory elements within the enhancer that lies between the chicken beta- and epsilon-globin genes. Constructions carrying the mutant enhancer were introduced by stable transformation into an avian erythroid cell line. We observed that weakening the enhancer resulted in creation of two classes of site: those still completely accessible to nuclease attack and those that were completely blocked. This all-or-none behavior suggests a mechanism by which chromatin structure can act to sharpen the response of developmental systems to changing concentrations of regulatory factors. Another problem raised by chromatin structure concerns the establishment of boundaries between active and inactive chromatin domains. We have identified a DNA element at the 5' end of the chicken beta-globin locus, near such a boundary, that has the properties of an insulator; in test constructions, it blocks the action of an enhancer on a promoter when it is placed between them. We describe the properties and partial dissection of this sequence. A third problem is posed by the continued presence of nucleosomes on transcribed genes, which might prevent the passage of RNA polymerase. We show, however, that a prokaryotic polymerase can transcribe through a histone octamer on a simple chromatin template. The analysis of this process reveals that an octamer is capable of transferring from a position in front of the polymerase to one behind, without ever losing its attachment to the DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reprotonation of the transiently deprotonated retinal Schiff base in the bacteriorhodopsin photocycle is greatly slowed when the proton donor Asp-96 is removed with site-specific mutagenesis, but its rate is restored upon adding azide or other weak acids such as formate and cyanate. As expected, between pH 3 and 7 the rate of Schiff base protonation in the photocycle of the D96N mutant correlates with the concentrations of the acid forms of these agents. Dissection of the rates in the biexponential reprotonation kinetics of the Schiff base between pH 7 and 9 yielded calculated rate constants for the protonation equilibrium. Their dependencies on pH and azide or cyanate concentrations are consistent with both earlier suggested mechanisms: (i) azide and other weak acids may function as proton carriers in the protonation equilibrium of the Schiff base, or (ii) the binding of their anionic forms may catalyze proton conduction to and from the Schiff base. The measured rate constants allow the calculation of the pKa of the Schiff base during its reprotonation in the photocycle of D96N. It is 8.2-8.3, a value much below the pKa determined earlier in unphotolyzed bacteriorhodopsin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extensive refolding of the membrane-anchoring chain of hemagglutinin (HA) of influenza virus (termed HA2) in cellular endosomes, which initiates viral entry by membrane fusion, suggests that viral HA is meta-stable. HA2 polypeptide residues 38-175 expressed in Escherichia coli are reported here to fold in vivo into a soluble trimer. The structure appears to be the same as the low-pH-induced conformation of viral HA2 by alpha-helical content, thermodynamic stability, protease dissection, electron microscopy, and antibody binding. These results provide evidence that the structure of the low-pH-induced fold of viral HA2 (TBHA2) observed crystallographically is the lowest-energy-state fold of the HA2 polypeptide. They indicate that the HA2 conformation in viral HA before low pH activation of its fusion potential is metastable and suggest that removal of the receptor-binding chain (HA1) is enough to allow HA2 to adopt the stable state. Further, they provide direct evidence that low pH is not required to form the membrane-fusion conformation but acts to make this state kinetically accessible in viral HA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial progress has been made in understanding the genetic basis of temperature-compensated circadian clocks. Ultradian rhythms, with a period shorter than 24 h, are at least as widespread as circadian rhythms. We have initiated genetic analysis of defecation behavior, which is controlled by an ultradian clock in Caenorhabditis elegans. The defecation motor program is activated every 45 sec, and this rhythm is temperature compensated. We describe mutations in 12 genes that either shorten or lengthen the cycle period. We find that most of these mutations also disrupt temperature compensation, suggesting that this process is an integral part of the clock. These genes open the way for molecular genetic dissection of this ultradian clock.