991 resultados para DIRECT-INJECTION
Resumo:
We present a detailed direct numerical simulation (DNS) of the two-dimensional Navier-Stokes equation with the incompressibility constraint and air-drag-induced Ekman friction; our DNS has been designed to investigate the combined effects of walls and such a friction on turbulence in forced thin films. We concentrate on the forward-cascade regime and show how to extract the isotropic parts of velocity and vorticity structure functions and hence the ratios of multiscaling exponents. We find that velocity structure functions display simple scaling, whereas their vorticity counterparts show multiscaling, and the probability distribution function of the Weiss parameter 3, which distinguishes between regions with centers and saddles, is in quantitative agreement with experiments.
Resumo:
In the rangelands of northern Australia, basal bark, cut stump, hand applied residual herbicides and foliar spraying have traditionally been the main herbicide techniques for control of individual exotic woody weeds growing within scattered to medium density infestations. In this paper we report on the preliminary results of stem injection as an alternate technique for the control of yellow oleander ( Cascabela thevetia (L.) Lippold), a woody weed that is difficult to kill. A randomised complete block experiment comprising 12 herbicide treatments (including a control) and three replicates was undertaken. Two rates of triclopyr + picloram, hexazinone, glyphosate, 2,4- D + picloram and metsufuron methyl and one rate of imazapyr were tested. At 15 months after application, triclopyr + picloram, glyphosate, 2,4-D + picloram and imazapyr all recorded high mortality (>90%) for at least one application rate. These results suggest that stem injection warrants further investigation as a control technique for other exotic woody weeds growing in rangelands.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.
Resumo:
Ca2+ ions are necessary for the successful propagation of mycobacteriophage I3. An assay for the phage DNA release in the presence of an isolated cell wall preparation from the host was established, and in this system Ca2+ ions also stimulated the release of DNA. The inhibition of phage DNA injection caused by Tween 80 (polyoxyethylene sorbitan monooleate), a nonionic detergent routinely used in mycobacterial cultures, was reversed by Ca2+. The presence of a phage-associated ATP-hydrolyzing activity was demonstrated. This enzyme was stimulated by Ca2+ ions and inhibited by Tween 80. From this and the behavior of the two agents at the level of DNA injection, as well as the fact that phage I3 has a contractile tail structure, we conclude that the phage-associated ATPase is involved in the DNA injection process.
Resumo:
Current understanding is that high planting density has the potential to suppress weeds and crop-weed interactions can be exploited by adjusting fertilizer rates. We hypothesized that (a) high planting density can be used to suppress Rottboellia cochinchinensis growth and (b) rice competitiveness against this weed can be enhanced by increasing nitrogen (N) rates. We tested these hypotheses by growing R. cochinchinensis alone and in competition with four rice planting densities (0, 100, 200, and 400 plants m-2) at four N rates (0, 50, 100, and 150 kg ha-1). At 56 days after sowing (DAS), R. cochinchinensis plant height decreased by 27-50 %, tiller number by 55-76 %, leaf number by 68-84 %, leaf area by 70-83 %, leaf biomass by 26-90 %, and inflorescence biomass by 60-84 %, with rice densities ranging from 100 to 400 plants m-2. All these parameters increased with an increase in N rate. Without the addition of N, R. cochinchinensis plants were 174 % taller than rice; whereas, with added N, they were 233 % taller. Added N favored more weed biomass production relative to rice. R. cochinchinensis grew taller than rice (at all N rates) to avoid shade, which suggests that it is a "shade-avoiding" plant. R. cochinchinensis showed this ability to reduce the effect of rice interference through increased leaf weight ratio, specific stem length, and decreased root-shoot weight ratio. This weed is more responsive to N fertilizer than rice. Therefore, farmers should give special consideration to the application timing of N fertilizer when more N-responsive weeds are present in their field. Results suggest that the growth and seed production of R. cochinchinensis can be decreased considerably by increasing rice density to 400 plants m-2. There is a need to integrate different weed control measures to achieve complete control of this noxious weed.
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.
Resumo:
Herein, we report a simple and efficient methodology for the synthesis of beta-amino disulfides by regioselective ring opening of sulfamidates with benzyltriethylammonium tetrathiomolybdate [BnNEt3](2)MoS4. Stability and reactivity of different protecting groups under the reaction conditions have been discussed. This methodology has also been extended to serine and threonine derived sulfamidates to furnish cystine and 3,3'-dimethyl cystine derivatives.
Resumo:
Dry direct-seeded rice (DSR) faces with complex weed problems particularly when farmers missed pre-emergence herbicide applications. Thus, an effective and strategic weed control in DSR is often required with available options of post-emergence herbicides. In such situations, tank mixtures of herbicides may provide broad spectrum weed control in DSR. Field experiments were conducted in the wet seasons of 2013 and 2014 to study weed control in response to tank mixtures of herbicides currently applied in DSR in South Asia. Results revealed that the tank mixtures of the currently available herbicides (azimsulfuron plus bispyribac or fenoxaprop, bispyribac plus fenoxaprop, and azimsulfuron plus bispyribac plus fenoxaprop; all applied as post-emergence) rarely resulted in antagonistic effects. Highest weed control efficiency (∼98%) was recorded with the tank mixture of azimsulfuron plus bispyribac plus fenoxaprop during both the years. This treatment also produced highest grain yield (7.2 t ha−1 in 2013 and 7.9 t ha−1in 2014), which was similar to the grain yield in the plots treated with the tank mix of azimsulfuron plus fenoxaprop, pendimethalin (applied as pre-emergence) followed by (fb) bispyribac, pendimethalin fb fenoxaprop, as well as pendimethalin fb azimsulfuron. Plots treated with the post-emergence application of single herbicide (i.e., azimsulfuron, bispyribac, or fenoxaprop) had lower grain yield (3.0–5.2 t ha−1 in 2013 to 3.5–6.1 t ha−1in 2014) than all the sequential herbicide treatments and tank mixtures (azimsulfuron plus fenoxaprop and azimsulfuron plus bispyribac), owing to a broad spectrum weed control. The study suggested that if farmers missed the pre-emergence application of herbicides (e.g., pendimethalin) due to erratic rains or due to other reasons, good weed control and high yield can still be obtained with tank mix applications of azimsulfuron plus fenoxaprop or azimsulfuron plus bispyribac plus fenoxaprop in DSR.
Resumo:
We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.
Resumo:
A direct method of preparing cast aluminium alloy-graphite particle composites using uncoated graphite particles is reported. The method consists of introducing and dispersing uncoated but suitably pretreated graphite particles in aluminium alloy melts, and casting the resulting composite melts in suitable permanent moulds. The optical pretreatment required for the dispersion of the uncoated graphite particles in aluminium alloy melts consists of heating the graphite particles to 400° C in air for 1 h just prior to their dispersion in the melts. The effects of alloying elements such as Si, Cu and Mg on the dispersability of pretreated graphite in molten aluminium have also been reported. It was found that additions of about 0.5% Mg or 5% Si significantly improve the dispersability of graphite particles in aluminium alloy melts as indicated by the high recoveries of graphite in the castings of these composites. It was also possible to disperse upto 3% graphite in LM 13 alloy melts and retain the graphite particles in a well distributed fashion in the castings using the pre-heat-treated graphite particles. The observations in this study have been related to the information presently available on wetting between graphite and molten aluminium in the presence of different elements and our own thermogravimetric analysis studies on graphite particles. Physical and mechanical properties of LM 13-3% graphite composite made using pre-heat-treated graphite powder, were found to be adequate for many applications, including pistons which have been successfully used in internal combustion engines.
Resumo:
Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.
Resumo:
Fan forced injection of phosphine gas fumigant into stored grain is a common method to treat infestation by insects. For low injection velocities the transport of fumigant can be modelled as Darcy flow in a porous medium where the gas pressure satisfies Laplace's equation. Using this approach, a closed form series solution is derived for the pressure, velocity and streamlines in a cylindrically stored grain bed with either a circular or annular inlet, from which traverse times are numerically computed. A leading order closed form expression for the traverse time is also obtained and found to be reasonable for inlet configurations close to the central axis of the grain storage. Results are interpreted for the case of a representative 6m high farm wheat store, where the time to advect the phosphine to almost the entire grain bed is found to be approximately one hour.
Resumo:
- Purpose This paper aims to investigate how direct mail consumption contributes to brand relationship quality. Store flyers and other direct mailings continue to play a significant role in many companies’ communication strategies. Research on this topic predominantly investigates driving store traffic and sales. Less is known regarding the consumer side, such as the value that consumers may derive from the consumption of direct mailings and the effects of such a value on brand relationship quality. To address this limitation, this paper tests a causal model of the contribution of direct mail value to brand commitment, drawing on a value framework that integrates social theory of engagement regimes and literature on experiential customer value. - Design/methodology/approach The empirical work of this paper is based on a rigorous four-study mixed methods design, involving qualitative study, confirmatory factor analysis and partial least squares structural modeling. - Findings The authors develop two second-order formatively designed scales – familiar value and planned value scales – that illustrate the role of engagement regimes in consumer behavior. Although both types of value contribute equally to direct mail attachment, they exert contrasting effects on other mediational consumer responses, such as reading and gratitude. Finally, the proposed theoretical model appears to be robust in predicting customers’ brand commitment. - Research limitations/implications This study provides new insights into the research on consumer value and brand relational communication. - Originality/value This study is the first to consider consumer benefits from the social perspective of engagement regimes.