950 resultados para DIRECT ETHANOL FUEL CELL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known on a putative effect of vitamin D on CD8+ T cells. Yet, these cells are involved in the immmunopathogenesis of MS. We assessed the cytokine profile of EBV-specific CD8+ T cells of 10 early MS patients and 10 healthy control subjects with or without 1,25(OH)(2)D(3) and found that, with 1,25(OH)(2)D(3), these cells secreted less IFN-γ and TNF-α and more IL-5 and TGF-β. CD4+ T cell depletion or even culture with CD8+ T cells only did not abolish the immunomodulatory effect of 1,25(OH)(2)D(3) on CD8+ T cells, suggesting that 1,25(OH)(2)D(3) can act directly on CD8+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental leishmaniasis offers a well characterized model of T helper type 1 cell (Th1)-mediated control of infection by an intracellular organism. Susceptible BALB/c mice aberrantly develop Th2 cells in response to infection and are unable to control parasite dissemination. The early CD4(+) T cell response in these mice is oligoclonal and reflects the expansion of Vbeta4/ Valpha8-bearing T cells in response to a single epitope from the parasite Leishmania homologue of mammalian RACK1 (LACK) antigen. Interleukin 4 (IL-4) generated by these cells is believed to direct the subsequent Th2 response. We used T cells from T cell receptor-transgenic mice expressing such a Vbeta4/Valpha8 receptor to characterize altered peptide ligands with similar affinity for I-Ad. Such altered ligands failed to activate IL-4 production from transgenic LACK-specific T cells or following injection into BALB/c mice. Pretreatment of susceptible mice with altered peptide ligands substantially altered the course of subsequent infection. The ability to confer a healer phenotype on otherwise susceptible mice using altered peptides that differed by a single amino acid suggests limited diversity in the endogenous T cell repertoire recognizing this antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of malarial vaccine based on the circumsporozoite (CS) protein, a majuor surface antigen of the sporozoite stage of the malaria parasite, requires the identification of T and B cell epitopes for inclusion in recombinant or synthetic vaccine candidates. We have investigated the specificity and function of a series of T cell clones, derived from volunteers immunized with Plasmodium falciparum sporozoites in an effort to identify relevant epitopes in the immune response to the pre-erythrocytic stages of the parasite. CD4+ T cell clones were obtained wich specifically recognized a repetitive epitope located in the 5'repeat region of the CS protein. This epitope, when conjugated to the 3'repeat region in a synthetic MAPs construct, induced high titers of antisporozoite antibodies in C57B1 mice. A second T cell epitope, which mapped to aa 326-345 of the carboxy terminal, was recognized by lytic, as well as non-lytic, CD4+ T cells derived from the sporozoite-immunized volunteers. The demonstration of CD4+ CTL in the volunteers, and the recent studies inthe rodent model (Renia et al., 1991; Tsuji et al., 1990), suggested that CS-specific CD4+ T cells, in addition to their indirect role as helper cells in the induction of antibody and CD8 + effector cells, may also play a direct role in protection against sporozoite challenge by targeting EEF within the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The Peroxisome Proliferator-Activated Receptor (PPAR) alpha belongs to the superfamily of Nuclear Receptors and plays an important role in numerous cellular processes, including lipid metabolism. It is known that PPARalpha also has an anti-inflammatory effect, which is mainly achieved by down-regulating pro-inflammatory genes. The objective of this study was to further characterize the role of PPARalpha in inflammatory gene regulation in liver. RESULTS: According to Affymetrix micro-array analysis, the expression of various inflammatory genes in liver was decreased by treatment of mice with the synthetic PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. In contrast, expression of Interleukin-1 receptor antagonist (IL-1ra), which was acutely stimulated by LPS treatment, was induced by PPARalpha. Up-regulation of IL-1ra by LPS was lower in PPARalpha -/- mice compared to Wt mice. Transactivation and chromatin immunoprecipitation studies identified IL-1ra as a direct positive target gene of PPARalpha with a functional PPRE present in the promoter. Up-regulation of IL-1ra by PPARalpha was conserved in human HepG2 hepatoma cells and the human monocyte/macrophage THP-1 cell line. CONCLUSIONS: In addition to down-regulating expression of pro-inflammatory genes, PPARalpha suppresses the inflammatory response by direct up-regulation of genes with anti-inflammatory properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ewing's sarcoma family tumors (ESFT) are the second most common bone malignancy in children and young adults, characterized by unique chromosomal translocations that in 85% of cases lead to expression of the EWS-FLI-1 fusion protein. EWS-FLI-1 functions as an aberrant transcription factor that can both induce and suppress members of its target gene repertoire. We have recently demonstrated that EWS-FLI-1 can alter microRNA (miRNA) expression and that miRNA145 is a direct EWS-FLI-1 target whose suppression is implicated in ESFT development. Here, we use miRNA arrays to compare the global miRNA expression profile of human mesenchymal stem cells (MSC) and ESFT cell lines, and show that ESFT display a distinct miRNA signature that includes induction of the oncogenic miRNA 17-92 cluster and repression of the tumor suppressor let-7 family. We demonstrate that direct repression of let-7a by EWS-FLI-1 participates in the tumorigenic potential of ESFT cells in vivo. The mechanism whereby let-7a expression regulates ESFT growth is shown to be mediated by its target gene HMGA2, as let-7a overexpression and HMGA2 repression both block ESFT cell tumorigenicity. Consistent with these observations, systemic delivery of synthetic let-7a into ESFT-bearing mice restored its expression in tumor cells, decreased HMGA2 expression levels and resulted in ESFT growth inhibition in vivo. Our observations provide evidence that deregulation of let-7a target gene expression participates in ESFT development and identify let-7a as promising new therapeutic target for one of the most aggressive pediatric malignancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CHO is the most commonly used mammalian host for the generation of cell lines allowing for the production of high quality therapeutic proteins. The generation of such cell lines is a lengthy and resource-intensive process requiring extensive screening in order to isolate candidates with optimal characteristics, such as growth, stability and productivity. For this reason, the biotechnology industry invests much effort in attempts to optimize CHO expression systems in order to streamline and shorten the cell line selection process. Based on preliminary observations of a facilitated selection of CHO-GS cell lines expressing members of the IL-17 cytokine family, this study investigates the use of IL-17F as a novel enhancing factor for CHO cell line generation. Using two different CHO expression systems (exploiting GS and DHFR-based selection), we demonstrated that IL-17F expression caused a significant increase in the occurrence of colonies during the selection process. All colonies selected produced substantial amounts of IL-17F, suggesting that benefits were conferred, during selection, to those cells expressing the cytokine. Furthermore, transgene expression levels were significantly increased when the selection pressure was raised to a level that would not normally be permissive for colony selection (i.e. 100 |o.M MSX for the CHO-GS expression system or 1000 nM MTX for the CHO-DHFR system). Finally, IL-17F expression was also found to enhance the rate of appearance of clones during single cell subcloning in the absence of selection pressure. Overall, these benefits have the potential to allow a substantial reduction in the length of cell line generation while significantly increasing cell line productivity. Nevertheless, we found that the high IL-17F expression levels required to convey enhancing effects was a limitation when attempting to co-express IL-17F and a recombinant soluble protein of therapeutic interest from independent CMV promoters within the same expression vector. In order to understand and overcome this limitation, studies were designed to characterize the IL-17F enhancing effect at the molecular and cellular level. Regular supplementation of recombinant biologically-active IL-17F into the culture medium during cell line selection was not able to reproduce the enhancing effects of endogenous IL-17F expression. In addition, increased IL-17F expression correlated with increased CHO-GS selection transgene expression at the single cell level. This data suggested a possible effect of IL-17F on viral promoter activity or transgene mRNA stability. It also provided direct evidence that the cells expressing the highest amounts of IL-17F obtained the most benefit. Overall data obtained from these study implied that IL-17F may act through an intracellular mechanism, possibly exerted during secretion. We therefore initiated experiments designed to determine the specific compartment(s) within which IL-17F triggers its effect. This work has identified IL-17F as a potentially powerful tool to optimize the CHO cell line generation process. The characterization of this enhancing effect at the molecular level has given us several insights into overcoming the current limitations, thus paving the way for the development of a viable technology that can be exploited within the biotechnology industry. - La CHO est la cellule hôte de mammifere la plus couramment utilisée dans la création de lignée cellulaire produisant des protéines thérapeutiques de haute qualité. La génération de ces lignées cellulaires est un processus long et exigeant l'utilisation de techniques de sélection robustes afin d'isoler des candidats possédants les caractéristiques optimales de croissance, de productivité et de stabilité d'expression. Les industries biopharmaceutiques ont investi beaucoup d'efforts afin d'optimiser les systèmes d'expression CHO dans le but raccourcir la longueur du procédé de sélection de lignées cellulaires et aussi d'en augmenter l'efficacité. A partir d'observations préliminaires obtenues lors de la génération de lignées cellulaires CHO- GS exprimant une cytokine appartenant à la famille des IL-17, nous avons réalisé une étude portant sur l'utilisation de l'IL-17F humaine (IL-17F) comme nouveau facteur d'optimisation pour la génération de lignées cellulaires CHO. Nous avons démontré, en utilisant les deux systèmes de sélection et d'expression CHO couramment utilisés (le premier exploitant la GS et l'autre basée sur la DHFR), que l'expression de l'IL-17F permet une augmentation significative de la fréquence d'apparition de colonies durant le processus de sélection de lignées cellulaires. Les différentes colonies sélectionnées expriment des quantités substantielles d'IL-17F, suggérant un effet bénéfique lors de la sélection qui serait exclusivement conféré aux cellules exprimant la cytokine. En outre, le niveau d'expression du transgene se trouve significativement augmenté lorsque la pression de sélection est portée à un niveau habituellement trop élevé pour permettre la sélection de colonies (soit 100 |JM MSX pour le système d'expression CHO-GS ou 1000 nM MTX pour le système CHO- DHFR). Enfin, l'expression d'IL-17F permet également d'améliorer la vitesse d'apparition de clones pendant une étape de sous-clonage en l'absence de pression de sélection. L'ensemble de ces effets bénéfiques permettent une réduction substantielle de la durée de génération de lignées cellulaires tout en augmentant considérablement la productivité des lignées obtenues. Néanmoins, nous avons constaté que la nécessité d'exprimer des niveaux élevés d'IL-17F afin obtenir l'ensemble de ses effets bénéfiques devient une contrainte lors de l'utilisation d'un vecteur d'expression composé de deux promoteurs CMV indépendants pour la co-expression de la cytokine et d'une protéine soluble présentant un intérêt thérapeutique. Afin de mieux comprendre et de surmonter cette limitation, plusieurs études ont été effectuées dans le but de mieux caractériser l'effet de IL-17F au niveau subcellulaire. L'apport régulier en IL-17F recombinante et biologiquement active dans le milieu de culture lors de la sélection de lignées cellulaires ne permet pas de reproduire les effets bénéfiques observés par l'expression endogène d'IL-17F. En outre, nous avons constaté que, lors de l'utilisation du système CHO- GS, l'augmentation d'expression de 1TL-17F est corrélée à un accroissement de l'expression du marqueur de sélection au niveau cellulaire. Ces résultats suggèrent un possible effet d'IL- 17F sur l'activité des promoteurs viraux et ainsi fournissent une preuve directe que les cellules exprimant de haut niveau d'IL-17F sont celles qui en profitent le plus. L'ensemble de ces observations mettrait en avant que l'effet d'IL-17F se ferait selon un mécanisme intracellulaire. Nous avons donc étudié le(s) compartiment(s) spécifique(s) dans lequel IL-17F pourrait exercer son effet. Ce travail a permis de définir IL-17F comme un puissant outil pour l'optimisation des procédés de génération de lignées cellulaires CHO. La caractérisation de cette amélioration de l'effet au niveau moléculaire nous a donné plusieurs indications sur la manière de dépasser les limitations actuelles, ouvrant ainsi la voie au développement d'une technologie viable qui peut être exploitée pars l'industrie biotechnologique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of an antigenic peptide with MHC class I molecules and the TCR on living cells. Two photoreactive derivatives of the H-2Kd (Kd) restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) were used. The first derivative contained an N-terminal photoreactive iodo, 4-azido salicyloyl (IASA) group and biotin on the TCR contact residue Lys259 [IASA-YIPSAEK(biotin)I]. As previously described, this derivative selectively bound to and labeled the Kd molecule. The second photoreactive compound, the isomeric biotin-YIPSAEK(IASA)I, also efficiently bound to the Kd molecule, but failed to label this protein. A CTL clone derived from a mouse immunized with this derivative recognized this conjugate but not the parental P. berghei circumsporozoite peptide or the [IASA-YIPSAEK-(biotin)I] derivative in an Kd-restricted manner. Incubation of the cloned CTL cells with biotin-YIPSAEK(IASA)I, but not its isomer, followed by UV irradiation resulted in photoaffinity labeling of the TCR-alpha chain that was dependent on the conjugate binding to the Kd molecule. The TCR labeling was partially inhibited by anti-LFA 1 and anti-ICAM1 mAb, but was increased by addition of beta 2m or soluble KdQ10. The exquisite labeling selectivity of the two photoprobes opens a new, direct approach to the molecular analysis of antigen presentation and recognition by living CTL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microautophagy is the direct uptake of soluble or particulate cellular constituents into lysosomes. Here, I describe methods to reconstitute and study this process in vitro, using vacuoles (lysosomes) from the yeast Saccharomyces cerevisiae as model organelles. Protocols to grow the cells, isolate vacuoles from them, and to induce microautophagy of soluble tracers are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells normally grow to a certain size before they enter mitosis and divide. Entry into mitosis depends on the activity of Cdk1, which is inhibited by the Wee1 kinase and activated by the Cdc25 phosphatase. However, how cells sense their size for mitotic commitment remains unknown. Here we show that an intracellular gradient of the dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) Pom1, which emanates from the ends of rod-shaped Schizosaccharomyces pombe cells, serves to measure cell length and control mitotic entry. Pom1 provides positional information both for polarized growth and to inhibit cell division at cell ends. We discovered that Pom1 is also a dose-dependent G2-M inhibitor. Genetic analyses indicate that Pom1 negatively regulates Cdr1 and Cdr2, two previously described Wee1 inhibitors of the SAD kinase family. This inhibition may be direct, because in vivo and in vitro evidence suggest that Pom1 phosphorylates Cdr2. Whereas Cdr1 and Cdr2 localize to a medial cortical region, Pom1 forms concentration gradients from cell tips that overlap with Cdr1 and Cdr2 in short cells, but not in long cells. Disturbing these Pom1 gradients leads to Cdr2 phosphorylation and imposes a G2 delay. In short cells, Pom1 prevents precocious M-phase entry, suggesting that the higher medial Pom1 levels inhibit Cdr2 and promote a G2 delay. Thus, gradients of Pom1 from cell ends provide a measure of cell length to regulate M-phase entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low frequency of self-peptide-specific T cells in the human preimmune repertoire has so far precluded their direct evaluation. Here, we report an unexpected high frequency of T cells specific for the self-antigen Melan-A/MART-1 in CD8 single-positive thymocytes from human histocompatibility leukocyte antigen-A2 healthy individuals, which is maintained in the peripheral blood of newborns and adults. Postthymic replicative history of Melan-A/MART-1-specific CD8 T cells was independently assessed by quantifying T cell receptor excision circles and telomere length ex vivo. We provide direct evidence that the large T cell pool specific for the self-antigen Melan-A/MART-1 is mostly generated by thymic output of a high number of precursors. This represents the only known naive self-peptide-specific T cell repertoire directly accessible in humans.