725 resultados para Cytosolic sulfotransferases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2)D3], a steroid hormone with immunomodulating properties, on nuclear factor kappa B (NF-kappa B) proteins was examined in in vitro activated normal human lymphocytes by Western blot analysis. Over a 72-hr period of activation, the expression of the 50-kDa NF-kappa B, p50, and its precursor, p105, was increased progressively. When cells were activated in the presence of 1,25(OH)2D3, the levels of the mature protein as well as its precursor were decreased. The effect of the hormone on the levels of p50 was demonstrable in the cytosolic and nuclear compartments; it required between 4 and 8 hr and was specific, as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were ineffective. Besides p50, 1,25(OH)2D3 decreased the levels of another NF-kappa B protein, namely c-rel. In addition, 1,25(OH)2D3 decreased the abundance of a specific DNA-protein complex formed upon incubation of nuclear extracts from activated lymphocytes with a labeled NF-kappa B DNA binding motif. Further, 1,25(OH)2D3 inhibited the transcriptional activity of NF-kappa B in Jurkat cells transiently transfected with a construct containing four tandem repeats of the NF-kappa B binding sequence of the immunoglobulin kappa light chain gene linked to the chloramphenicol acetyltransferase reporter gene. These observations demonstrate directly that there is de novo synthesis of NF-kappa B during human lymphocyte activation and suggest that this process is hormonally regulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Escherichia coli cytosolic homotetrameric protein SecB is known to be involved in protein export across the plasma membrane. A currently prevalent view holds that SecB functions exclusively as a chaperone interacting nonspecifically with unfolded proteins, not necessarily exported proteins, whereas a contrary view holds that SecB functions primarily as a specific signal-recognition factor--i.e., in binding to the signal sequence region of exported proteins. To experimentally resolve these differences we assayed for binding between chemically pure SecB and chemically pure precursor (p) form (containing a signal sequence) and mature (m) form (lacking a signal sequence) of a model secretory protein (maltose binding protein, MBP) that was C-terminally truncated. Because of the C-terminal truncation, neither p nor m was able to fold. We found that SecB bound with 100-fold higher affinity to p (Kd 0.8 nM) than it bound to m (Kd 80 nM). As the presence of the signal sequence in p is the only feature that distinguished p from m, these data strongly suggest that the high-affinity binding of SecB is to the signal sequence region and not the mature region of p. Consistent with this conclusion, we found that a wild-type signal peptide, but not an export-incompetent mutant signal peptide of another exported protein (LamB), competed for binding to p. Moreover, the high-affinity binding of SecB to p was resistant to 1 M salt, whereas the low-affinity binding of SecB to m was not. These qualitative differences suggested that SecB binding to m was primarily by electrostatic interactions, whereas SecB binding to p was primarily via hydrophobic interactions, presumably with the hydrophobic core of the signal sequence. Taken together our data strongly support the notion that SecB is primarily a specific signal-recognition factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is synthesized in the brain, and a single type of cloned receptor for the N-terminal portion of PTHrP and PTH is present in the central nervous system. Nothing is known about the physiological actions or signaling pathways used by PTHrP in the brain. Using cultured rat hippocampal neurons, we demonstrate that N-terminal PTHrP[1-34] and PTH[1-34] signal via cAMP and cytosolic calcium transients. The cAMP response showed strong acute (< or = 6 h) homologous and heterologous desensitization after preincubation with PTHrP or PTH. In contrast, the acute calcium response did not desensitize after preincubation with PTHrP; in fact, preincubation dramatically recruited additional responsive neurons. Unexpectedly, C-terminal PTHrP[107-139], which does not bind or activate the cloned PTH/PTHrP receptor, signaled in neurons via cytosolic calcium but not cAMP. Although some neurons responded to both PTHrP[1-34] and PTHrP[107-139], others responded only to PTHrP[1-34]. We conclude that certain hippocampal neurons exhibit dual signaling in response to PTHrP[1-34] and that some neurons have a receptor for C-terminal PTHrP that signals only via cytosolic calcium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal peptides direct the cotranslational targeting of nascent polypeptides to the endoplasmic reticulum (ER). It is currently believed that the signal recognition particle (SRP) mediates this targeting by first binding to signal peptides and then by directing the ribosome/nascent chain/SRP complex to the SRP receptor at the ER. We show that ribosomes can mediate targeting by directly binding to translocation sites. When purified away from cytosolic factors, including SRP and nascent-polypeptide-associated complex (NAC), in vitro assembled translation intermediates representing ribosome/nascent-chain complexes efficiently bound to microsomal membranes, and their nascent polypeptides could subsequently be efficiently translocated. Because removal of cytosolic factors from the ribosome/nascent-chain complexes also resulted in mistargeting of signalless nascent polypeptides, we previously investigated whether readdition of cytosolic factors, such as NAC and SRP, could restore fidelity to targeting. Without SRP, NAC prevented all nascent-chain-containing ribosomes from binding to the ER membrane. Furthermore, SRP prevented NAC from blocking ribosome-membrane association only when the nascent polypeptide contained a signal. Thus, NAC is a global ribosome-binding prevention factor regulated in activity by signal-peptide-directed SRP binding. A model presents ribosomes as the targeting vectors for delivering nascent polypeptides to translocation sites. In conjunction with signal peptides, SRP and NAC contribute to this specificity of ribosomal function by regulating exposure of a ribosomal membrane attachment site that binds to receptors in the ER membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heterogeneous proteins of yeast and nematode. The EH domain spans about 70 amino acids and shows approximately 60% overall amino acid conservation. We demonstrated the ability of the EH domain to specifically bind cytosolic proteins in normal and malignant cells of mesenchymal, epithelial, and hematopoietic origin. These observations prompted our search for additional EH-containing proteins in mammalian cells. Using an EH domain-specific probe derived from the eps15 cDNA, we cloned and characterized a cDNA encoding an EH-containing protein with overall similarity to Eps15; we designated this protein Eps15r (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidence suggests that slow anion channels in guard cells need to be activated to trigger stomatal closing and efficiently inactivated during stomatal opening. The patch-clamp technique was employed here to determine mechanisms that produce strong regulation of slow anion channels in guard cells. MgATP in guard cells, serving as a donor for phosphorylation, leads to strong activation of slow anion channels. Slow anion-channel activity was almost completely abolished by removal of cytosolic ATP or by the kinase inhibitors K-252a and H7. Nonhydrolyzable ATP, GTP, and guanosine 5'-[gamma-thio]triphosphate did not replace the ATP requirement for anion-channel activation. In addition, down-regulation of slow anion channels by ATP removal was inhibited by the phosphatase inhibitor okadaic acid. Stomatal closures in leaves induced by the plant hormone abscisic acid (ABA) and malate were abolished by kinase inhibitors and/or enhanced by okadaic acid. These data suggest that ABA signal transduction may proceed by activation of protein kinases and inhibition of an okadaic acid-sensitive phosphatase. This modulation of ABA-induced stomatal closing correlated to the large dynamic range for up- and down-regulation of slow anion channels by opposing phosphorylation and dephosphorylation events in guard cells. The presented opposing regulation by kinase and phosphatase modulators could provide important mechanisms for signal transduction by ABA and other stimuli during stomatal movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous measurements of cytosolic free Ca2+ concentration and insulin release, in mouse single pancreatic islets, revealed a direct correlation only initially after stimulation with glucose or K+. Later, there is an apparent dissociation between these two parameters, with translocation of alpha and epsilon isoenzymes of protein kinase C to membranes and simultaneous desensitization of insulin release in response to glucose. Recovery of insulin release, without any concomitant changes in cytosolic free Ca2+ concentration, after addition of phorbol 12-myristate 13-acetate, okadaic acid, and forskolin supports the notion that the desensitization process is accounted for by dephosphorylation of key regulatory sites of the insulin exocytotic machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genes for glycolytic and Calvin-cycle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher eukaryotes derive from ancient gene duplications which occurred in eubacterial genomes; both were transferred to the nucleus during the course of endosymbiosis. We have cloned cDNAs encoding chloroplast and cytosolic GAPDH from the early-branching photosynthetic protist Euglena gracilis and have determined the structure of its nuclear gene for cytosolic GAPDH. The gene contains four introns which possess unusual secondary structures, do not obey the GT-AG rule, and are flanked by 2- to 3-bp direct repeats. A gene phylogeny for these sequences in the context of eubacterial homologues indicates that euglenozoa, like higher eukaryotes, have obtained their GAPDH genes from eubacteria via endosymbiotic (organelle-to-nucleus) gene transfer. The data further suggest that the early-branching protists Giardia lamblia and Entamoeba histolytica--which lack mitochondria--and portions of the trypanosome lineage have acquired GAPDH genes from eubacterial donors which did not ultimately give rise to contemporary membrane-bound organelles. Evidence that "cryptic" (possibly ephemeral) endosymbioses during evolution may have entailed successful gene transfer is preserved in protist nuclear gene sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Murine suppressor T-cell hybridoma cells (231F1) secrete not only bioactive glycosylation-inhibiting factor (GIF) but also an inactive peptide comparable to bioactive GIF peptide in its molecular size and reactivity with anti-GIF; the amino acid sequence of the inactive peptide is identical to that of the bioactive homologue. The inactive GIF peptide in culture supernatant of both the 231F1 cells and a stable transfectant of human GIF cDNA in the murine suppressor T hybridoma selectively bound to Affi-Gel 10, whereas bioactive GIF peptides from the same sources failed to bind to the gel. The inactive cytosolic human GIF from the stable transfectant and Escherichia coli-derived recombinant human GIF also had affinity for Affi-Gel 10. Both the bioactive murine GIF peptide from the suppressor T hybridoma and bioactive recombinant human GIF from the stable transfectant bound to the anti-I-J monoclonal antibody H6 coupled to Affi-Gel. However, bioactive hGIF produced by a stable transfectant of human GIF cDNA in BMT10 cells failed to be retained in H6-coupled Affi-Gel. These results indicate that the I-J specificity is determined by the cell source of the GIF peptide and that the I-J determinant recognized by monoclonal antibody H6 does not represent a part of the primary amino acid sequence of GIF. It appears that the epitope is generated by a posttranslational modification of the peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Huntington disease (HD) phenotype is associated with expansion of a trinucleotide repeat in the IT15 gene, which is predicted to encode a 348-kDa protein named huntington. We used polyclonal and monoclonal anti-fusion protein antibodies to identify native huntingtin in rat, monkey, and human. Western blots revealed a protein with the expected molecular weight which is present in the soluble fraction of rat and monkey brain tissues and lymphoblastoid cells from control cases. In lymphoblastoid cell lines from juvenile-onset heterozygote HD cases, both normal and mutant huntingtin are expressed, and increasing repeat expansion leads to lower levels of the mutant protein. Immunocytochemistry indicates that huntingtin is located in neurons throughout the brain, with the highest levels evident in larger neurons. In the human striatum, huntingtin is enriched in a patch-like distribution, potentially corresponding to the first areas affected in HD. Subcellular localization of huntingtin is consistent with a cytosolic protein primarily found in somatodendritic regions. Huntingtin appears to particularly associate with microtubules, although some is also associated with synaptic vesicles. On the basis of the localization of huntingtin in association with microtubules, we speculate that the mutation impairs the cytoskeletal anchoring or transport of mitochondria, vesicles, or other organelles or molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this study was to determine whether sphingosine and ceramide, second messengers derived from sphingolipid breakdown, alter kidney proximal tubular cell viability and their adaptive responses to further damage. Adult human kidney proximal tubular (HK-2) cells were cultured for 0-20 hr in the presence or absence of sphingosine, sphingosine metabolites (sphingosine 1-phosphate, dimethylsphingosine), or C2, C8, or C16 ceramide. Acute cell injury was assessed by vital dye exclusion and tetrazolium dye transport. Their subsequent impact on superimposed ATP depletion/Ca2+ ionophore-induced damage was also assessed. Sphingosine (> or = 10 microM), sphingosine 1-phosphate, dimethylsphingosine, and selected ceramides (C2 and C8, but not C16) each induced rapid, dose-dependent cytotoxicity. This occurred in the absence of DNA laddering or morphologic changes of apoptosis, suggesting a necrotic form of cell death. Prolonged exposure (20 hr) to subtoxic sphingosine doses (< or = 7.5 microM) induced substantial cytoresistance to superimposed ATP depletion/Ca2+ ionophore-mediated damage. Conversely, neither short-term sphingosine treatment (< or = 8.5 hr) nor 20-hr exposures to any of the above sphingosine/ceramide derivatives/metabolites or various free fatty acids reproduced this effect. Sphingosine-induced cytoresistance was dissociated from the extent of cytosolic Ca2+ loading (indo-1 fluorescence), indicating a direct increase in cell resistance to attack. We conclude that sphingosine can exert dual effects on proximal renal tubular viability: in high concentrations it induces cell necrosis, whereas in low doses it initiates a cytoresistant state. These results could be reproduced in human foreskin fibroblasts, suggesting broad-based relevance to the area of acute cell injury and repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The guinea pig estrogen sulfotransferase gene has been cloned and compared to three other cloned steroid and phenol sulfotransferase genes (human estrogen sulfotransferase, human phenol sulfotransferase, and guinea pig 3 alpha-hydroxysteroid sulfotransferase). The four sulfotransferase genes demonstrate a common outstanding feature: the splice sites for their 3'-terminal exons are identically located. That is, the 3'-terminal exon splice sites involve a glycine that constitutes the N-terminal glycine of an invariably conserved GXXGXXK motif present in all steroid and phenol sulfotransferases for which primary structures are known. This consistency strongly suggests that all steroid and phenol sulfotransferase genes will be similarly spliced. The GXXGXXK motif forms the active binding site for the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate. Amino acid sequence alignment of 19 cloned steroid and phenol sulfotransferases starting with the GXXGXXK motif indicates that the 3'-terminal exon for each steroid and phenol sulfotransferase gene encodes a similarly sized C-terminal fragment of the protein. Interestingly, on further analysis of the alignment, three distinct amino acid sequence patterns emerge. The presence of the conserved functional GXXGXXK motif suggests that the protein domains encoded by steroid and phenol sulfotransferase 3'-terminal exons have evolved from a common ancestor. Furthermore, it is hypothesized that during the course of evolution, the 3'-terminal exon further diverged into at least three sulfotransferase subdivisions: a phenol or aryl group, an estrogen or phenolic steroid group, and a neutral steroid group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the lysosomal proteases cathepsins B and L and the calcium-dependent cytosolic protease calpain in hypoxia-induced renal proximal tubular injury was investigated. As compared to normoxic tubules, cathepsin B and L activity, evaluated by the specific fluorescent substrate benzyloxycarbonyl-L-phenylalanyl-L-arginine-7-amido-4-methylcoumarin, was not increased in hypoxic tubules or the medium used for incubation of hypoxic tubules in spite of high lactate dehydrogenase (LDH) release into the medium during hypoxia. These data in rat proximal tubules suggest that cathepsins are not released from lysosomes and do not gain access to the medium during hypoxia. An assay for calpain activity in isolated proximal tubules using the fluorescent substrate N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin was developed. The calcium ionophore ionomycin induced a dose-dependent increase in calpain activity. This increase in calpain activity occurred prior to cell membrane damage as assessed by LDH release. Tubular calpain activity increased significantly by 7.5 min of hypoxia, before there was significant LDH release, and further increased during 20 min of hypoxia. The cysteine protease inhibitor N-benzyloxycarbonyl-Val-Phe methyl ester (CBZ) markedly decreased LDH release after 20 min of hypoxia and completely prevented the increase in calpain activity during hypoxia. The increase in calpain activity during hypoxia and the inhibitor studies with CBZ therefore supported a role for calpain as a mediator of hypoxia-induced proximal tubular injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytosolic phosphorylation ratio ([ATP]/[ADP][P(i)]) in the mammalian heart was found to be inversely related to body mass with an exponent of -0.30 (r = 0.999). This exponent is similar to -0.25 calculated for the mass-specific O2 consumption. The inverse of cytosolic free [ADP], the Gibbs energy of ATP hydrolysis (delta G'ATP), and the efficiency of ATP production (energy captured in forming 3 mol of ATP per cycle along the mitochondrial respiratory chain from NADH to 1/2 O2) were all found to scale with body mass with a negative exponent. On the basis of scaling of the phosphorylation ratio and free cytosolic [ADP], we propose that the myocardium and other tissues of small mammals represent a metabolic system with a higher driving potential (a higher delta G'ATP from the higher [ATP]/[ADP][P(i)]) and a higher kinetic gain [(delta V/Vmax)/delta [ADP]] where small changes in free [ADP] produce large changes in steady-state rates of O2 consumption. From the inverse relationship between mitochondrial efficiency and body size we calculate that tissues of small mammals are more efficient than those of large mammals in converting energy from the oxidation of foodstuffs to the bond energy of ATP. A higher efficiency also indicates that mitochondrial electron transport is not the major site for higher heat production in small mammals. We further propose that the lower limit of about 2 g for adult endotherm body size (bumblebee-bat, Estrucan shrew, and hummingbird) may be set by the thermodynamics of the electron transport chain. The upper limit for body size (100,000-kg adult blue whale) may relate to a minimum delta G'ATP of approximately 55 kJ/mol for a cytoplasmic phosphorylation ratio of 12,000 M-1.