921 resultados para Cyclic voltammetry of copper complexes
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
"Work Performed Under Contract No. AC02-77CH00178."
Resumo:
First edition, September 1916. cf. verso of t.-p.
Resumo:
Re-engraved by Michael van der Gucht and others after the original edition published at Rome in 1691.
Resumo:
Inserted Report documentation page designates D. W. Boyer ... [et al.] as "authors."
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
Mode of access: Internet.
Resumo:
"ASTIA document no. AD142344."
Resumo:
Typewritten.
Resumo:
The letter, p. [2]-4, from the Treasury Dept. Revenue Office is signed by Samuel Smith.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
We produce families of irreducible cyclic presentations of the trivial group. These families comprehensively answer questions about such presentations asked by Dunwoody and by Edjvet, Hammond, and Thomas. Our theorems are purely theoretical, but their derivation is based on practical computations. We explain how we chose the computations and how we deduced the theorems.
Resumo:
A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.