858 resultados para Cutting machine
Resumo:
Efficient identification and follow-up of astronomical transients is hindered by the need for humans to manually select promising candidates from data streams that contain many false positives. These artefacts arise in the difference images that are produced by most major ground-based time-domain surveys with large format CCD cameras. This dependence on humans to reject bogus detections is unsustainable for next generation all-sky surveys and significant effort is now being invested to solve the problem computationally. In this paper, we explore a simple machine learning approach to real-bogus classification by constructing a training set from the image data of similar to 32 000 real astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep Survey. We derive our feature representation from the pixel intensity values of a 20 x 20 pixel stamp around the centre of the candidates. This differs from previous work in that it works directly on the pixels rather than catalogued domain knowledge for feature design or selection. Three machine learning algorithms are trained (artificial neural networks, support vector machines and random forests) and their performances are tested on a held-out subset of 25 per cent of the training data. We find the best results from the random forest classifier and demonstrate that by accepting a false positive rate of 1 per cent, the classifier initially suggests a missed detection rate of around 10 per cent. However, we also find that a combination of bright star variability, nuclear transients and uncertainty in human labelling means that our best estimate of the missed detection rate is approximately 6 per cent.
Resumo:
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 휃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.
Resumo:
Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.
Resumo:
Retinopathy of prematurity (ROP) is a rare disease in which retinal blood vessels of premature infants fail to develop normally, and is one of the major causes of childhood blindness throughout the world. The Discrete Conditional Phase-type (DC-Ph) model consists of two components, the conditional component measuring the inter-relationships between covariates and the survival component which models the survival distribution using a Coxian phase-type distribution. This paper expands the DC-Ph models by introducing a support vector machine (SVM), in the role of the conditional component. The SVM is capable of classifying multiple outcomes and is used to identify the infant's risk of developing ROP. Class imbalance makes predicting rare events difficult. A new class decomposition technique, which deals with the problem of multiclass imbalance, is introduced. Based on the SVM classification, the length of stay in the neonatal ward is modelled using a 5, 8 or 9 phase Coxian distribution.
Resumo:
Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.
Resumo:
Molecular dynamics (MD) simulation was carried out to acquire an in-depth understanding of the flow behaviour of single crystal silicon during nanometric cutting on three principal crystallographic planes and at different cutting temperatures. The key findings were that (i) the substrate material underneath the cutting tool was observed for the first time to experience a rotational flow akin to fluids at all the tested temperatures up to 1200 K. (ii) The degree of flow in terms of vorticity was found higher on the (1 1 1) crystal plane signifying better machinability on this orientation in accord with the current pool of knowledge (iii) an increase in the machining temperature reduces the springback effect and thereby the elastic recovery and (iv) the cutting orientation and the cutting temperature showed significant dependence on the location of the stagnation region in the cutting zone of the substrate.
Resumo:
Taking in recent advances in neuroscience and digital technology, Gander and Garland assess the state of the inter-arts in America and the Western world, exploring and questioning the primacy of affect in an increasingly hypertextual everyday environment. In this analysis they signal a move beyond W. J. T. Mitchell’s coinage of the ‘imagetext’ to an approach that centres the reader-viewer in a recognition, after John Dewey, of ‘art as experience’. New thinking in cognitive and computer sciences about the relationship between the body and the mind challenges any established definitions of ‘embodiment’, ‘materiality’, ‘virtuality’ and even ‘intelligence, they argue, whilst ‘Extended Mind Theory’, they note, marries our cognitive processes with the material forms with which we engage, confirming and complicating Marshall McLuhan’s insight, decades ago, that ‘all media are “extensions of man”’. In this chapter, Gander and Garland open paths and suggest directions into understandings and critical interpretations of new and emerging imagetext worlds and experiences.
Resumo:
The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.
Resumo:
As a newly invented parallel kinematic machine (PKM), Exechon has attracted intensive attention from both academic and industrial fields due to its conceptual high performance. Nevertheless, the dynamic behaviors of Exechon PKM have not been thoroughly investigated because of its structural and kinematic complexities. To identify the dynamic characteristics of Exechon PKM, an elastodynamic model is proposed with the substructure synthesis technique in this paper. The Exechon PKM is divided into a moving platform subsystem, a fixed base subsystem and three limb subsystems according to its structural features. Differential equations of motion for the limb subsystem are derived through finite element (FE) formulations by modeling the complex limb structure as a spatial beam with corresponding geometric cross sections. Meanwhile, revolute, universal, and spherical joints are simplified into virtual lumped springs associated with equivalent stiffnesses and mass at their geometric centers. Differential equations of motion for the moving platform are derived with Newton's second law after treating the platform as a rigid body due to its comparatively high rigidity. After introducing the deformation compatibility conditions between the platform and the limbs, governing differential equations of motion for Exechon PKM are derived. The solution to characteristic equations leads to natural frequencies and corresponding modal shapes of the PKM at any typical configuration. In order to predict the dynamic behaviors in a quick manner, an algorithm is proposed to numerically compute the distributions of natural frequencies throughout the workspace. Simulation results reveal that the lower natural frequencies are strongly position-dependent and distributed axial-symmetrically due to the structure symmetry of the limbs. At the last stage, a parametric analysis is carried out to identify the effects of structural, dimensional, and stiffness parameters on the system's dynamic characteristics with the purpose of providing useful information for optimal design and performance improvement of the Exechon PKM. The elastodynamic modeling methodology and dynamic analysis procedure can be well extended to other overconstrained PKMs with minor modifications.
Resumo:
With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed.
In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-defined portion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first mode as a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.
Resumo:
The main objective of the study presented in this paper was to investigate the feasibility using support vector machines (SVM) for the prediction of the fresh properties of self-compacting concrete. The radial basis function (RBF) and polynomial kernels were used to predict these properties as a function of the content of mix components. The fresh properties were assessed with the slump flow, T50, T60, V-funnel time, Orimet time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 min after adding the first water. The water dosage varied from 188 to 208 L/m3, the dosage of superplasticiser (SP) from 3.8 to 5.8 kg/m3, and the volume of coarse aggregates from 220 to 360 L/m3. In total, twenty mixes were used to measure the fresh state properties with different mixture compositions. RBF kernel was more accurate compared to polynomial kernel based support vector machines with a root mean square error (RMSE) of 26.9 (correlation coefficient of R2 = 0.974) for slump flow prediction, a RMSE of 0.55 (R2 = 0.910) for T50 (s) prediction, a RMSE of 1.71 (R2 = 0.812) for T60 (s) prediction, a RMSE of 0.1517 (R2 = 0.990) for V-funnel time prediction, a RMSE of 3.99 (R2 = 0.976) for Orimet time prediction, and a RMSE of 0.042 (R2 = 0.988) for L-box ratio prediction, respectively. A sensitivity analysis was performed to evaluate the effects of the dosage of cement and limestone powder, the water content, the volumes of coarse aggregate and sand, the dosage of SP and the testing time on the predicted test responses. The analysis indicates that the proposed SVM RBF model can gain a high precision, which provides an alternative method for predicting the fresh properties of SCC.
Resumo:
This paper describes the hydrogeological processes which caused unexpected instability and quick conditions during the excavation of a 25m deep cutting through a drumlin in County Down, Northern Ireland. A conceptual hydrogeological model of the cutting, based on pore pressures monitored during and after the excavation demonstrates how quick conditions at the toe of the cutting caused liquefaction of the till. Stability of the cutting was re-established by draining the highly permeable, weathered Greywacke which underlies the drumlin, through the use of a deep toe drain. In spite of this drainage, the cutting was only marginally stable due to the presence of a low permeability zone in the till above the bedrock which limits the reduction of elevated pore pressures within the upper to mid-depths of the drumlin. The factor of safety has been further improved by the addition of vertical relief drains at the crest and berm of the cutting to relieve the pore-pressures within the upper till by intercepting the weathered bedrock. The paper also highlights the importance of carrying out an adequate site investigation compliant with Eurocode 7 and additional monitoring in excavations in stiff, low permeability till.