997 resultados para Cost curves
Resumo:
The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.
Resumo:
In recent literature, ℓ1-regularised MPC, or ℓasso-MPC, has been recommended for control tasks involving complex requirements on the control signals, for instance, the simultaneous solution of regulation and sharp control allocation for redundantly-actuated systems. This is due to the implicit thresholding ability of LASSO regression. In this paper, a stabilising terminal cost featuring a mixed ℓ1/ℓ2 2 penalty is presented. Then, a candidate terminal controller is computed, with the aim of enlarging the region of attraction. © 2013 EUCA.
Resumo:
An optical waveguide sensor formed directly on low-cost PCB substrates is presented for the first time. The device integrates polymer waveguides functionalized with chemical dyes, photonic and electronic components and allows multiple-gas detection. © OSA/CLEO 2011.
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for nextgeneration datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © OSA/OFC/NFOEC 2011.
Resumo:
A code-label recognition time of less than 500ps is demonstrated using low-cost FIRfilters. The electronically-processed label provides a control signal from an auto-correlated label. Error-free electronic code-label switching of an optical 10Gb/s signal is demonstrated. © 2010 Optical Society of America.
Resumo:
Carrierless amplitude and phase modulation for next-generation datacommunication links is considered for the first time. Low-cost implementation of a high-spectral-efficiency 10 Gb/s channel is demonstrated as a route to links at 40 Gb/s and beyond. © 2010 Optical Society of America.
Resumo:
This paper describes electronically processed CDMA techniques which allow Gb/s data rates for each user in passive optical networks. We will present recent progress including a 16 chip Walsh-code system operating at 18 Gchip/s supporting up to 16 users. © 2009 IEEE.
Resumo:
This work analysed the cost-effectiveness of avoiding carbon dioxide (CO2) emissions using advanced internal combustion engines, hybrids, plug-in hybrids, fuel cell vehicles and electric vehicles across the nine UK passenger vehicles segments. Across all vehicle types and powertrain groups, minimum installed motive power was dependent most on the time to accelerate from zero to 96.6km/h (60mph). Hybridising the powertrain reduced the difference in energy use between vehicles with slow (t z - 60 > 8 s) and fast acceleration (t z - 60 < 8 s) times. The cost premium associated with advanced powertrains was dependent most on the powertrain chosen, rather than the performance required. Improving non-powertrain components reduced vehicle road load and allowed total motive capacity to decrease by 17%, energy use by 11%, manufacturing cost premiums by 13% and CO2 emissions abatement costs by 15%. All vehicles with advanced internal combustion engines, most hybrid and plug-in hybrid powertrains reduced net CO2 emissions and had lower lifetime operating costs than the respective segment reference vehicle. Most powertrains using fuel cells and all electric vehicles had positive CO2 emissions abatement costs. However, only vehicles using advanced internal combustion engines and parallel hybrid vehicles may be attractive to consumers by the fuel savings offsetting increases in vehicle cost within two years. This work demonstrates that fuel savings are possible relative to today's fleet, but indicates that the most cost-effective way of reducing fuel consumption and CO2 emissions is by advanced combustion technologies and hybridisation with a parallel topology. © 2014 Elsevier Ltd.
Resumo:
© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.
Rapid growth cost in “all-fish” growth hormone gene transgenic carp: Reduced critical swimming speed
Resumo:
Evidence has accumulated that there is a trade-off between benefits and costs associated with rapid growth. A trade-off between growth rates and critical. swimming speed (U-crit) had been also reported to be common in teleost fish. We hypothesize that growth acceleration in the F-3 generation of "all-fish" growth hormone gene (GH) transgenic common carp (Cyprinus carpio L.) would reduce the swimming abilities. Growth and swimming performance between transgenic fish and non-transgenic controls were) compared. The results showed that transgenic fish had a mean body weight 1.4-1.9-fold heavier, and a mean specific growth rate (SGR) value 6%-10% higher than the controls. Transgenic fish, however, had a mean absolute U-crit (cm/s) value 22% or mean relative Ucrit (BL/s) value 24% lower than the controls. It suggested that fast-growing "all-fish" GH-transgenic carp were inferior swimmers. It is also supported that there was a trade-off between growth rates and swimming performance, i.e. faster-growing individuals had lower critical swimming speed.
Resumo:
We demonstrate a 10 x 10 Gb/s uncooled DWDM system using orthogonal coding on adjacent carriers, assuming the use of a monolithically integrated sources. A power saving of 72% is expected over traditional WDM. © 2014 OSA.
Resumo:
An APD is shown to improve the noise figure of a lossy optical link compared to a PIN-TIA combination of equivalent gain. Transmission of IEEE 802.11g WLAN signals is demonstrated with 18dB optical link loss. © 2009 Optical Society of America.
Resumo:
A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature T-th can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature T-th variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 mu m CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature T(th)s from 45-120 degrees C with a 5 degrees C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm(2) and power consumption is 3.1 mu A at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.