809 resultados para Cortical excitability
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGCs) in the eye transmit the environmental light level, projecting to the suprachiasmatic nucleus (SCN) (Berson, Dunn & Takao, 2002; Hattar, Liao, Takao, Berson & Yau, 2002), the location of the circadian biological clock, and the olivary pretectal nucleus (OPN) of the pretectum, the start of the pupil reflex pathway (Hattar, Liao, Takao, Berson & Yau, 2002; Dacey, Liao, Peterson, Robinson, Smith, Pokorny, Yau & Gamlin, 2005). The SCN synchronizes the circadian rhythm, a cycle of biological processes coordinated to the solar day, and drives the sleep/wake cycle by controlling the release of melatonin from the pineal gland (Claustrat, Brun & Chazot, 2005). Encoded photic input from ipRGCs to the OPN also contributes to the pupil light reflex (PLR), the constriction and recovery of the pupil in response to light. IpRGCs control the post-illumination component of the PLR, the partial pupil constriction maintained for > 30 sec after a stimulus offset (Gamlin, McDougal, Pokorny, Smith, Yau & Dacey, 2007; Kankipati, Girkin & Gamlin, 2010; Markwell, Feigl & Zele, 2010). It is unknown if intrinsic ipRGC and cone-mediated inputs to ipRGCs show circadian variation in their photon-counting activity under constant illumination. If ipRGCs demonstrate circadian variation of the pupil response under constant illumination in vivo, when in vitro ipRGC activity does not (Weng, Wong & Berson, 2009), this would support central control of the ipRGC circadian activity. A preliminary experiment was conducted to determine the spectral sensitivity of the ipRGC post-illumination pupil response under the experimental conditions, confirming the successful isolation of the ipRGC response (Gamlin, et al., 2007) for the circadian experiment. In this main experiment, we demonstrate that ipRGC photon-counting activity has a circadian rhythm under constant experimental conditions, while direct rod and cone contributions to the PLR do not. Intrinsic ipRGC contributions to the post-illumination pupil response decreased 2:46 h prior to melatonin onset for our group model, with the peak ipRGC attenuation occurring 1:25 h after melatonin onset. Our results suggest a centrally controlled evening decrease in ipRGC activity, independent of environmental light, which is temporally synchronized (demonstrates a temporal phase-advanced relationship) to the SCN mediated release of melatonin. In the future the ipRGC post-illumination pupil response could be developed as a fast, non-invasive measure of circadian rhythm. This study establishes a basis for future investigation of cortical feedback mechanisms that modulate ipRGC activity.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
Acute exercise has been shown to exhibit different effects on human sensorimotor behavior; however, the causes and mechanisms of the responses are often not clear. The primary aim of the present study was to determine the effects of incremental running until exhaustion on sensorimotor performance and adaptation in a tracking task. Subjects were randomly assigned to a running group (RG), a tracking group (TG), or a running followed by tracking group (RTG), with 10 subjects assigned to each group. Treadmill running velocity was initially set at 2.0 m s− 1, increasing by 0.5 m s− 1 every 5 min until exhaustion. Tracking consisted of 35 episodes (each 40 s) where the subjects' task was to track a visual target on a computer screen while the visual feedback was veridical (performance) or left-right reversed (adaptation). Resting electroencephalographic (EEG) activity was recorded before and after each experimental condition (running, tracking, rest). Tracking performance and the final amount of adaptation did not differ between groups. However, task adaptation was significantly faster in RTG compared to TG. In addition, increased alpha and beta power were observed following tracking in TG but not RTG although exhaustive running failed to induce significant changes in these frequency bands. Our results suggest that exhaustive running can facilitate adaptation processes in a manual tracking task. Attenuated cortical activation following tracking in the exercise condition was interpreted to indicate cortical efficiency and exercise-induced facilitation of selective central processes during actual task demands.
Resumo:
The present study used ERPs to compare processing of fear-relevant (FR) animals (snakes and spiders) and non-fear-relevant (NFR) animals similar in appearance (worms and beetles). EEG was recorded from 18 undergraduate participants (10 females) as they completed two animal-viewing tasks that required simple categorization decisions. Participants were divided on a post hoc basis into low snake/spider fear and high snake/spider fear groups. Overall, FR animals were rated higher on fear and elicited a larger LPC. However, individual differences qualified these effects. Participants in the low fear group showed clear differentiation between FR and NFR animals on subjective ratings of fear and LPC modulation. In contrast, participants in the high fear group did not show such differentiation between FR and NFR animals. These findings suggest that the salience of feared-FR animals may generalize on both a behavioural and electro-cortical level to other animals of similar appearance but of a non-harmful nature.
Resumo:
Vernier acuity, a form of visual hyperacuity, is amongst the most precise forms of spatial vision. Under optimal conditions Vernier thresholds are much finer than the inter-photoreceptor distance. Achievement of such high precision is based substantially on cortical computations, most likely in the primary visual cortex. Using stimuli with added positional noise, we show that Vernier processing is reduced with advancing age across a wide range of noise levels. Using an ideal observer model, we are able to characterize the mechanisms underlying age-related loss, and show that the reduction in Vernier acuity can be mainly attributed to the reduction in efficiency of sampling, with no significant change in the level of internal position noise, or spatial distortion, in the visual system.
Resumo:
Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is influenced by the scaffold architecture. Copyright © 2012 American Society for Bone and Mineral Research.
Resumo:
Removal of well-fixed cement at revision surgery risks bone loss, cortical perforation and fracture, is time-consuming, technically demanding and carries increased risks for the patient. The cement-in-cement technique avoids these problems and when used appropriately has given favourable results at our centre when used on both the femoral and acetabular sides of the articulation. A modified technique has also been used in selected cases of infection and peri-prosthetic fracture. This chapter highlights the results to date and the operative techniques employed. It is essential to recognise that this technique relies fundamentally on the presence of a well-fixed cement mantle, and it is imperative that the criteria laid out are adhered to in order to achieve success. If there is loosening or lysis on the femoral side extending distal to the lesser trochanter or around more than just the periphery of the acetabular cement mantle, then alternative revision techniques should be employed.
Resumo:
26.1 Migraine 26.2 Pathogenesis of Migraine 26.3 Cortical Spreading Depression 26.4 Neurogenic Inflammation Theory 26.5 Role of 5-HT in Migraine 26.6 Acute and Prophylactic Treatment of Migraine
Resumo:
We have presently evaluated membranes prepared from Bombyx mori silk fibroin (BMSF), for their potential use as a prosthetic Bruch’s membrane and carrier substrate for human retinal pigment epithelial (RPE) cell transplantation. Porous BMSF membranes measuring 3 μm in thickness were prepared from aqueous solutions (3% w/v) containing poly(ethylene oxide) (0.09%). The permeability coefficient for membranes was between 3 and 9 × 10-5 cm/s by using Allura red or 70 kDa FITC-dextran respectively. Average pore size (± sd) was 4.9 ± 2.3 µm and 2.9 ± 1.5 µm for upper and lower membrane surfaces respectively. Optimal attachment of ARPE-19 cells to BMSF membrane was achieved by pre-coating with vitronectin (1 µg/mL). ARPE-19 cultures maintained in low serum on BMSF membranes for approximately 8 weeks, developed a cobble-stoned morphology accompanied by a cortical distribution of F-actin and ZO-1. Similar results were obtained using primary cultures of human RPE cells, but cultures took noticeably longer to establish on BMSF compared with tissue culture plastic. These findings encourage further studies of BMSF as a substrate for RPE cell transplantation.
Resumo:
Visual abnormalities, both at the sensory input and the higher interpretive levels, have been associated with many of the symptoms of schizophrenia. Individuals with schizophrenia typically experience distortions of sensory perception, resulting in perceptual hallucinations and delusions that are related to the observed visual deficits. Disorganised speech, thinking and behaviour are commonly experienced by sufferers of the disorder, and have also been attributed to perceptual disturbances associated with anomalies in visual processing. Compounding these issues are marked deficits in cognitive functioning that are observed in approximately 80% of those with schizophrenia. Cognitive impairments associated with schizophrenia include: difficulty with concentration and memory (i.e. working, visual and verbal), an impaired ability to process complex information, response inhibition and deficits in speed of processing, visual and verbal learning. Deficits in sustained attention or vigilance, poor executive functioning such as poor reasoning, problem solving, and social cognition, are all influenced by impaired visual processing. These symptoms impact on the internal perceptual world of those with schizophrenia, and hamper their ability to navigate their external environment. Visual processing abnormalities in schizophrenia are likely to worsen personal, social and occupational functioning. Binocular rivalry provides a unique opportunity to investigate the processes involved in visual awareness and visual perception. Binocular rivalry is the alternation of perceptual images that occurs when conflicting visual stimuli are presented to each eye in the same retinal location. The observer perceives the opposing images in an alternating fashion, despite the sensory input to each eye remaining constant. Binocular rivalry tasks have been developed to investigate specific parts of the visual system. The research presented in this Thesis provides an explorative investigation into binocular rivalry in schizophrenia, using the method of Pettigrew and Miller (1998) and comparing individuals with schizophrenia to healthy controls. This method allows manipulations to the spatial and temporal frequency, luminance contrast and chromaticity of the visual stimuli. Manipulations to the rival stimuli affect the rate of binocular rivalry alternations and the time spent perceiving each image (dominance duration). Binocular rivalry rate and dominance durations provide useful measures to investigate aspects of visual neural processing that lead to the perceptual disturbances and cognitive dysfunction attributed to schizophrenia. However, despite this promise the binocular rivalry phenomenon has not been extensively explored in schizophrenia to date. Following a review of the literature, the research in this Thesis examined individual variation in binocular rivalry. The initial study (Chapter 2) explored the effect of systematically altering the properties of the stimuli (i.e. spatial and temporal frequency, luminance contrast and chromaticity) on binocular rivalry rate and dominance durations in healthy individuals (n=20). The findings showed that altering the stimuli with respect to temporal frequency and luminance contrast significantly affected rate. This is significant as processing of temporal frequency and luminance contrast have consistently been demonstrated to be abnormal in schizophrenia. The current research then explored binocular rivalry in schizophrenia. The primary research question was, "Are binocular rivalry rates and dominance durations recorded in participants with schizophrenia different to those of the controls?" In this second study binocular rivalry data that were collected using low- and highstrength binocular rivalry were compared to alternations recorded during a monocular rivalry task, the Necker Cube task to replicate and advance the work of Miller et al., (2003). Participants with schizophrenia (n=20) recorded fewer alternations (i.e. slower alternation rates) than control participants (n=20) on both binocular rivalry tasks, however no difference was observed between the groups on the Necker cube task. Magnocellular and parvocellular visual pathways, thought to be abnormal in schizophrenia, were also investigated in binocular rivalry. The binocular rivalry stimuli used in this third study (Chapter 4) were altered to bias the task for one of these two pathways. Participants with schizophrenia recorded slower binocular rivalry rates than controls in both binocular rivalry tasks. Using a ‘within subject design’, binocular rivalry data were compared to data collected from a backwardmasking task widely accepted to bias both these pathways. Based on these data, a model of binocular rivalry, based on the magnocellular and parvocellular pathways that contribute to the dorsal and ventral visual streams, was developed. Binocular rivalry rates were compared with performance on the Benton’s Judgment of Line Orientation task, in individuals with schizophrenia compared to healthy controls (Chapter 5). The Benton’s Judgment of Line Orientation task is widely accepted to be processed within the right cerebral hemisphere, making it an appropriate task to investigate the role of the cerebral hemispheres in binocular rivalry, and to investigate the inter-hemispheric switching hypothesis of binocular rivalry proposed by Pettigrew and Miller (1998, 2003). The data were suggestive of intra-hemispheric rather than an inter-hemispheric visual processing in binocular rivalry. Neurotransmitter involvement in binocular rivalry, backward masking and Judgment of Line Orientation in schizophrenia were investigated using a genetic indicator of dopamine receptor distribution and functioning; the presence of the Taq1 allele of the dopamine D2 receptor (DRD2) receptor gene. This final study (Chapter 6) explored whether the presence of the Taq1 allele of the DRD2 receptor gene, and thus, by inference the distribution of dopamine receptors and dopamine function, accounted for the large individual variation in binocular rivalry. The presence of the Taq1 allele was associated with slower binocular rivalry rates or poorer performance in the backward masking and Judgment of Line Orientation tasks seen in the group with schizophrenia. This Thesis has contributed to what is known about binocular rivalry in schizophrenia. Consistently slower binocular rivalry rates were observed in participants with schizophrenia, indicating abnormally-slow visual processing in this group. These data support previous studies reporting visual processing abnormalities in schizophrenia and suggest that a slow binocular rivalry rate is not a feature specific to bipolar disorder, but may be a feature of disorders with psychotic features generally. The contributions of the magnocellular or dorsal pathways and parvocellular or ventral pathways to binocular rivalry, and therefore to perceptual awareness, were investigated. The data presented supported the view that the magnocellular system initiates perceptual awareness of an image and the parvocellular system maintains the perception of the image, making it available to higher level processing occurring within the cortical hemispheres. Abnormal magnocellular and parvocellular processing may both contribute to perceptual disturbances that ultimately contribute to the cognitive dysfunction associated with schizophrenia. An alternative model of binocular rivalry based on these observations was proposed.
Resumo:
The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.
Resumo:
After attending this presentation, attendees will gain awareness of: (1) the error and uncertainty associated with the application of the Suchey-Brooks (S-B) method of age estimation of the pubic symphysis to a contemporary Australian population; (2) the implications of sexual dimorphism and bilateral asymmetry of the pubic symphysis through preliminary geometric morphometric assessment; and (3) the value of three-dimensional (3D) autopsy data acquisition for creating forensic anthropological standards. This presentation will impact the forensic science community by demonstrating that, in the absence of demographically sound skeletal collections, post-mortem autopsy data provides an exciting platform for the construction of large contemporary ‘virtual osteological libraries’ for which forensic anthropological research can be conducted on Australian individuals. More specifically, this study assesses the applicability and accuracy of the S-B method to a contemporary adult population in Queensland, Australia, and using a geometric morphometric approach, provides an insight to the age-related degeneration of the pubic symphysis. Despite the prominent use of the Suchey-Brooks (1990) method of age estimation in forensic anthropological practice, it is subject to intrinsic limitations, with reports of differential inter-population error rates between geographical locations1-4. Australian forensic anthropology is constrained by a paucity of population specific standards due to a lack of repositories of documented skeletons. Consequently, in Australian casework proceedings, standards constructed from predominately American reference samples are applied to establish a biological profile. In the global era of terrorism and natural disasters, more specific population standards are required to improve the efficiency of medico-legal death investigation in Queensland. The sample comprises multi-slice computed tomography (MSCT) scans of the pubic symphysis (slice thickness: 0.5mm, overlap: 0.1mm) on 195 individuals of caucasian ethnicity aged 15-70 years. Volume rendering reconstruction of the symphyseal surface was conducted in Amira® (v.4.1) and quantitative analyses in Rapidform® XOS. The sample was divided into ten-year age sub-sets (eg. 15-24) with a final sub-set of 65-70 years. Error with respect to the method’s assigned means were analysed on the basis of bias (directionality of error), inaccuracy (magnitude of error) and percentage correct classification of left and right symphyseal surfaces. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone composition were quantified using novel automated engineering software capabilities. The results of this study demonstrated correct age classification utilizing the mean and standard deviations of each phase of the S-B method of 80.02% and 86.18% in Australian males and females, respectively. Application of the S-B method resulted in positive biases and mean inaccuracies of 7.24 (±6.56) years for individuals less than 55 years of age, compared to negative biases and mean inaccuracies of 5.89 (±3.90) years for individuals greater than 55 years of age. Statistically significant differences between chronological and S-B mean age were demonstrated in 83.33% and 50% of the six age subsets in males and females, respectively. Asymmetry of the pubic symphysis was a frequent phenomenon with 53.33% of the Queensland population exhibiting statistically significant (χ2 - p<0.01) differential phase classification of left and right surfaces of the same individual. Directionality was found in bilateral asymmetry, with the right symphyseal faces being slightly older on average and providing more accurate estimates using the S-B method5. Morphometric analysis verified these findings, with the left surface exhibiting significantly greater circumference and surface area than the right (p<0.05). Morphometric analysis demonstrated an increase in maximum height and width of the surface with age, with most significant changes (p<0.05) occurring between the 25-34 and 55-64 year age subsets. These differences may be attributed to hormonal components linked to menopause in females and a reduction in testosterone in males. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal surfaces of the pubic symphysis. This study recommends that the S-B method be applied with caution in medico-legal death investigations of unknown skeletal remains in Queensland. Age estimation will always be accompanied by error; therefore this study demonstrates the potential for quantitative morphometric modelling of age related changes of the pubic symphysis as a tool for methodological refinement, providing a rigor and robust assessment to remove the subjectivity associated with current pelvic aging methods.
Resumo:
Current forensic practice in age estimation relies on the application of morphological standards as a means to characterize complex threedimensional skeletal surfaces. Research in our laboratory has demonstrated that the application of the morphologically based Suchey-Brooks method to a contemporary Queensland, Australian population demonstrated significant inaccuracy in age-estimation. Consequently, this study presents preliminary results to quantify age-related skeletal changes of the pubic symphysis in Queensland individuals using novel geometric and micro-architectural protocols that have the potential of improving age estimation in the forensic context. Computed tomography scans of the right and left pubis were obtained from Caucasian individuals aged 15–70 years (n=195) from the Queensland Health Forensic and Scientific Services. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface, and micro-architectural assessment of cortical and trabecular bone structure were conducted in Rapidform XOS and Osteomeasure, respectively. Morphometric analysis demonstrated increases in maximum height and width of the surface with age independent of gender, with most significant (P<0.05) changes between the 25–34 and 55–64 year subsets. Sexual dimorphism and bilateral asymmetry were prominent features in the Queensland population. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal aspects of the symphysis. The ability to quantitatively model age-related changes to the pubic symphysis provides potential for future methodological refinement, where rigor and robust geometric assessment of the surface may remove the subjectivity associated with aging the pubic symphysis.