788 resultados para Coronary Heart-disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary proteomics is emerging as a powerful non-invasive tool for diagnosis and monitoring of variety of human diseases. We tested whether signatures of urinary polypeptides can contribute to the existing biomarkers for coronary artery disease (CAD). We examined a total of 359 urine samples from 88 patients with severe CAD and 282 controls. Spot urine was analyzed using capillary electrophoresis on-line coupled to ESI-TOF-MS enabling characterization of more than 1000 polypeptides per sample. In a first step a "training set" for biomarker definition was created. Multiple biomarker patterns clearly distinguished healthy controls from CAD patients, and we extracted 15 peptides that define a characteristic CAD signature panel. In a second step, the ability of the CAD-specific panel to predict the presence of CAD was evaluated in a blinded study using a "test set." The signature panel showed sensitivity of 98% (95% confidence interval, 88.7-99.6) and 83% specificity (95% confidence interval, 51.6-97.4). Furthermore the peptide pattern significantly changed toward the healthy signature correlating with the level of physical activity after therapeutic intervention. Our results show that urinary proteomics can identify CAD patients with high confidence and might also play a role in monitoring the effects of therapeutic interventions. The workflow is amenable to clinical routine testing suggesting that non-invasive proteomics analysis can become a valuable addition to other biomarkers used in cardiovascular risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammation plays a key role in the pathogenesis of atherosclerosis. The more we discover about the molecular pathways involved in atherosclerosis, the more we perceive the importance of monocytes in this process. Circulating monocytes are components of innate immunity, and many pro-inflammatory cytokines and adhesion molecules facilitate their adhesion and migration to the vascular endothelial wall. In addition to the accumulation of lipids and formation of atherogenic 'foam' cells, monocytes may promote atherosclerotic plaque growth by production of inflammatory cytokines, matrix metalloproteinases, and reactive oxidative species. However, the contribution of monocytes to atherogenesis is not only limited to tissue destruction. Monocyte subsets are also involved in intraplaque angiogenesis and tissue reparative processes. The aim of this overview is to discuss the mechanisms of monocyte activation, the pivotal role and importance of activated monocytes in atherosclerotic coronary artery disease, their implication in the development of acute coronary events, and their potential in cardiovascular reparative processes such angiogenesis.