993 resultados para Cores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the RV Polarstern ANT XXIV-2 cruise to the Southern Ocean and the Weddell Sea in 2007/2008, sediment samples were taken during and after a phytoplankton bloom at 52°S 0°E. The station, located at 2960 m water depth, was sampled for the first time at the beginning of December 2007 and revisited at the end of January 2008. Fresh phytodetritus originating from the phytoplankton bloom first observed in the water column had reached the sea floor by the time of the second visit. Absolute abundances of bacteria and most major meiofauna taxa did not change between the two sampling dates. In the copepods, the second most abundant meiofauna taxon after the nematodes, the enhanced input of organic material did not lead to an observable increase of reproductive effort. However, significantly higher relative abundances of meiofauna could be observed at the sediment surface after the remains of the phytoplankton bloom reached the sea floor. Vertical shifts in meiofauna distribution between December and January may be related to changing pore-water oxygen concentration, total sediment fatty acid content, and pigment profiles measured during our study. Higher oxygen consumption after the phytoplankton bloom may have resulted from an enhanced respiratory activity of the living benthic component, as neither meiofauna nor bacteria reacted with an increase in individual numbers to the food input from the water column. Based on our results, we infer that low temperatures and ecological strategies are the underlying factors for the delayed response of benthic deep-sea copepods, in terms of egg and larval production, to the modified environmental situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment cores from nine sites along a profile on the Antarctic continental margin off Kapp Norvegia were analysed sedimentologicaly. The carbonate and organic carbon content, grain size distribution, composition of the coarse fraction and clay minerals were determined. d18O- and d13C-isotope ratios were also measured. The distribution of ice rafted debris was determined by a new method. Sedimentation-rates were obtained from 230Th- and 14C-analyses. A segregation into seven different sediment facies was made possible by different sedimentological parameters, which can be attributed to different sedimentation environments and conditions. Thr profile can be divided morphologicaly into shelf, upper continental slope, slope terrace and lower continental slope. The paratill facies is deposited on the shelf during an interglacial phase and consists mainly of ice rafted sediments. A portion of the fine fraction is being carried away by the antarctic coastel current. The sedimentation rate lies between 0 and 3 cm/1000 a. The coarse grained deposits of the upper, relatively steep continental slope, were specified as a rest sediment. Current and gravity sediment transport are responsible for the intensive sorting of ice rafted material coming from the shelf. The fine sediment is carried away by currents while sand and silt are deposited as small turbidites on the slope terrace. The morainic facies only appears at the base of the upper continental slope and defines ice advances, beyond the shelf margin. The facies mainly consists of transported shelf sediments. The interglacial facies, deposited during the interglacial phases on the continental slope, are characterized by high proportions of ice raft, coarse mean grain size, low content of montmorillonite and a carbonate content, which mainly originates from planktonic foraminifera (N. pachyderma). At the central part of the slope the sedimentation rate is at its lowest (2 cm/1000 a) and increases to 3-4 cm/1000 a towards the sea, due to high production of biogenic components and towards the continent due to an increasing input of terrigenous material. Sedimentary conditions during glacial times are depicted in the glacial facies by a low content of ice rafted debris, a lower mean grain size and a high content of montmorillonite. Biogeneous components are absent. The sedimentation rate is generally about 1 cm/1000a. A transition facies is deposited during the transition from glacial to interglacial conditions. Typical for this facies, with a terrigenous composition similar to the interglacial facies, is a high content of radiolaria. The reason for the change of plankton from a siliceous to a carbonacous fauna may have been the changing hydrography caused by the sea ice. The surge facies is deposited at the continental margin under the ice shelf and is a sediment exclusively delivered by currents. With the aid of this facies it was, for the first time possible to prove the existence of Antarctic ice surges, an aspect wh ich has been discussed for the past 20 years.