1000 resultados para Copepoda -- behavior
Resumo:
The feeding of freshwater copepods, especially cyclopoida, has been poorly covered in research so far. The majority of existing special works on the feeding of cyclopoida illustrate this question only from the qualitative side. The food content of the nauplius of freshwater cyclops has not been studied at all, as also the feeding of adult entomostracans on bacteria. Moreover the question of the suitability of vegetable food for Cyclops is not clear enough. This article aims to elucidate as fully as possible the nutrition of Acanthocyclops viridis (Jur.) - a large cyclops, inhabiting the mass of demersal layers of the open parts of the Rybinsk reservoir and its foreshore. The present work is devoted only to the predatory feeding of A. viridis, and includes data from the content of the intestines of cyclops, collected in natural conditions, and also the results of experimental observations carried out in a laboratory during 1958.
Resumo:
As is known, copepods play an important role in the nutrition of fish. Therefore with a view to facilitating research on the study of the quantitative side of feeding, there have recently appeared a considerable number of papers devoted to the development of methods for determining the wet. weight of these crustaceans. For the further facilitating of research in the nutrition of fish it would be of great interest to clarify the problem, is there not some kind of rule in the growth of the crustaceans during metamorphosis, and if there is such a rule is it not possible, to determine the length of the larvae at each stage, not by measuring them, but by using the formulae derived on the basis of these rules. This article examines the growth curves of different species of freshwater Copepoda, obtained on the basis of experimental observations in cultures or by way of measurement of mass material at all stages of development in samples from water-bodies. The authors study in particular the ratio of the mean diameter of the eggs to the mean length of the egg-bearing females.
Resumo:
In the waterbodies of central Russia, the Urals and western Siberia four species of Crustacea, related to the genus Mesocyclops, are widely distributed: M. (s.str.) leuckarti (Claus), M. (Thermocyclops) oithonoides Sars, [M.](Th.) crassus (Fisch.) and M. (Th.) dybowskii (Lande). Numbers and biomass of Mesocyclops oithonoides in the pelagic water of various water-bodies of the Urals are presented and observations on the above mentioned species are discussed.
Resumo:
The seminal bag, or seminal receptacle, forms a characteristic organ of cyclopids, serving for retention of the sperms discharged from the spermatophores. The structure of the seminal receptacle, more precisely its form, is fairly widely used in diagnosis and undoubtedly can be more widely applied in the systematics of the group. Within the limits of the family Cyclopidae it is possible to distinguish crustaceans with three basic types of seminal bag. The differences consist of the position which this organ occupies in the genital segment. of one species, we carried out a series of observations on its formation in ontogenesis and during the life of the adult stage. As material for observation the study used laboratory cultures of three species; Acanthocyclops americanus (Marsh) from the plankton of the Moscow River, Cyclops vicinus Uljan and Mesocyclops leuckarti Glaus from the plankton of the channel section of the upper part of the Gorkovsk reservoir. The author concluded that the irreversibility of the changes in the seminal receptacle presents the possibility of utilising this structure as one of the indicators of the growth of the individual.
Resumo:
Observations of individual weight, duration of development and production of different stages of Tropodiaptomus incognitus are presented. The study is based on data gathered from Lake Chad in 1968.
Resumo:
We study the behavior of granular materials at three length scales. At the smallest length scale, the grain-scale, we study inter-particle forces and "force chains". Inter-particle forces are the natural building blocks of constitutive laws for granular materials. Force chains are a key signature of the heterogeneity of granular systems. Despite their fundamental importance for calibrating grain-scale numerical models and elucidating constitutive laws, inter-particle forces have not been fully quantified in natural granular materials. We present a numerical force inference technique for determining inter-particle forces from experimental data and apply the technique to two-dimensional and three-dimensional systems under quasi-static and dynamic load. These experiments validate the technique and provide insight into the quasi-static and dynamic behavior of granular materials.
At a larger length scale, the mesoscale, we study the emergent frictional behavior of a collection of grains. Properties of granular materials at this intermediate scale are crucial inputs for macro-scale continuum models. We derive friction laws for granular materials at the mesoscale by applying averaging techniques to grain-scale quantities. These laws portray the nature of steady-state frictional strength as a competition between steady-state dilation and grain-scale dissipation rates. The laws also directly link the rate of dilation to the non-steady-state frictional strength.
At the macro-scale, we investigate continuum modeling techniques capable of simulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular materials in a single computational domain. We propose a Smoothed Particle Hydrodynamics (SPH) approach for granular materials with a viscoplastic constitutive law. The constitutive law uses a rate-dependent and dilation-dependent friction law. We provide a theoretical basis for a dilation-dependent friction law using similar analysis to that performed at the mesoscale. We provide several qualitative and quantitative validations of the technique and discuss ongoing work aiming to couple the granular flow with gas and fluid flows.
Resumo:
We have investigated ultraviolet (UV) photorefractive effect of lithium niobate doubly doped with Ce and Cu. It is found the diffraction efficiency shows oscillating behavior Under UV-1ight-recording. A model in which electrons and holes can be excited from impurity centers in the UV region is proposed to study the oscillatory behavior of the diffraction efficiency. Oil the basis of the material equations and the coupled-wave equations, we found that the oscillatory behavior is due to the oscillation of the relative spatial phase shift Phi. And the electron-hole competition may cause the oscillation of the relative spatial phase shift. A switch point from electron grating to hole grating is chosen to realize nonvolatile readout by a red light with high sensitivity (0.4 cm/J). (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The behavior of spheres in non-steady translational flow has been studied experimentally for values of Reynolds number from 0.2 to 3000. The aim of the work was to improve our qualitative understanding of particle transport in turbulent gaseous media, a process of extreme importance in power plants and energy transfer mechanisms.
Particles, subjected to sinusoidal oscillations parallel to the direction of steady translation, were found to have changes in average drag coefficient depending upon their translational Reynolds number, the density ratio, and the dimensionless frequency and amplitude of the oscillations. When the Reynolds number based on sphere diameter was less than 200, the oscillation had negligible effect on the average particle drag.
For Reynolds numbers exceeding 300, the coefficient of the mean drag was increased significantly in a particular frequency range. For example, at a Reynolds number of 3000, a 25 per cent increase in drag coefficient can be produced with an amplitude of oscillation of only 2 per cent of the sphere diameter, providing the frequency is near the frequency at which vortices would be shed in a steady flow at the mean speed. Flow visualization shows that over a wide range of frequencies, the vortex shedding frequency locks in to the oscillation frequency. Maximum effect at the natural frequency and lock-in show that a non-linear interaction between wake vortex shedding and the oscillation is responsible for the increase in drag.
Resumo:
In the first part of the study, an RF coupled, atmospheric pressure, laminar plasma jet of argon was investigated for thermodynamic equilibrium and some rate processes.
Improved values of transition probabilities for 17 lines of argon I were developed from known values for 7 lines. The effect of inhomogeneity of the source was pointed out.
The temperatures, T, and the electron densities, ne , were determined spectroscopically from the population densities of the higher excited states assuming the Saha-Boltzmann relationship to be valid for these states. The axial velocities, vz, were measured by tracing the paths of particles of boron nitride using a three-dimentional mapping technique. The above quantities varied in the following ranges: 1012 ˂ ne ˂ 1015 particles/cm3, 3500 ˂ T ˂ 11000 °K, and 200 ˂ vz ˂ 1200 cm/sec.
The absence of excitation equilibrium for the lower excitation population including the ground state under certain conditions of T and ne was established and the departure from equilibrium was examined quantitatively. The ground state was shown to be highly underpopulated for the decaying plasma.
Rates of recombination between electrons and ions were obtained by solving the steady-state equation of continuity for electrons. The observed rates were consistent with a dissociative-molecular ion mechanism with a steady-state assumption for the molecular ions.
In the second part of the study, decomposition of NO was studied in the plasma at lower temperatures. The mole fractions of NO denoted by xNO were determined gas-chromatographically and varied between 0.0012 ˂ xNO ˂ 0.0055. The temperatures were measured pyrometrically and varied between 1300 ˂ T ˂ 1750°K. The observed rates of decomposition were orders of magnitude greater than those obtained by the previous workers under purely thermal reaction conditions. The overall activation energy was about 9 kcal/g mol which was considerably lower than the value under thermal conditions. The effect of excess nitrogen was to reduce the rate of decomposition of NO and to increase the order of the reaction with respect to NO from 1.33 to 1.85. The observed rates were consistent with a chain mechanism in which atomic nitrogen and oxygen act as chain carriers. The increased rates of decomposition and the reduced activation energy in the presence of the plasma could be explained on the basis of the observed large amount of atomic nitrogen which was probably formed as the result of reactions between excited atoms and ions of argon and the molecular nitrogen.
Resumo:
This dissertation describes efforts over the last five years to develop protective layers for semiconductor photoelectrodes based on monolayer or few-layer graphene sheets. Graphene is an attractive candidate for a protective layer because of its known chemical inertness, transparency, ease of deposition, and limited number of electronic states. Monolayer graphene was found to effectively inhibit loss of photocurrent over 1000 seconds at n-Si/aqueous electrolyte interfaces that exhibit total loss over photocurrent over 100 seconds. Further, the presence of graphene was found to effect only partial Fermi level pinning at the Si/graphene interface with respect to a range of nonaqueous electrolytes. Fluorination of graphene was found to extend the stability imparted on n-Si by the monolayer sheet in aqueous Fe(CN)63-/4- electrolyte to over 100,000 seconds. It was demonstrated that the stability of the photocurrent of n-Si/fluorinated graphene/aqueous electrolyte interfaces relative to n-Si/aqueous electrolyte interfaces is likely attributable to the inhibition of oxidation of the silicon surface.
This dissertation also relates efforts to describe and define terminology relevant to the field of photoelectrochemistry and solar fuels production. Terminology describing varying interfaces employed in electrochemical solar fuels devices are defined, and the research challenges associated with each are discussed. Methods for determining the efficiency of varying photoelectrochemical and solar-fuel-producing cells from the current-voltage behavior of the individual components of such a device without requiring the device be constructed are described, and a range of commonly employed performance metrics are explored.
Resumo:
A simple, direct and accurate method to predict the pressure distribution on supercavitating hydrofoils with rounded noses is presented. The thickness of body and cavity is assumed to be small. The method adopted in the present work is that of singular perturbation theory. Far from the leading edge linearized free streamline theory is applied. Near the leading edge, however, where singularities of the linearized theory occur, a non-linear local solution is employed. The two unknown parameters which characterize this local solution are determined by a matching procedure. A uniformly valid solution is then constructed with the aid of the singular perturbation approach.
The present work is divided into two parts. In Part I isolated supercavitating hydrofoils of arbitrary profile shape with parabolic noses are investigated by the present method and its results are compared with the new computational results made with Wu and Wang's exact "functional iterative" method. The agreement is very good. In Part II this method is applied to a linear cascade of such hydrofoils with elliptic noses. A number of cases are worked out over a range of cascade parameters from which a good idea of the behavior of this type of important flow configuration is obtained.
Some of the computational aspects of Wu and Wang's functional iterative method heretofore not successfully applied to this type of problem are described in an appendix.
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel "iterant deformable sensorimotor medium (IDSM)," designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor "meso-scale" between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks.