942 resultados para Cooking (Kudzu)
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.
Resumo:
Despite an increased scientific interest in the relatively new phenomenon of large-scale land acquisition (LSLA), data on the implementation of such projects and their impacts on the heterogeneous group of project-affected people are still sparse and superficial. Our ethnographic in-depth research on a Swiss-based bioenergy project in Sierra Leone generates well-documented data and provides insights into gendered access to land and wage employment. In the area where the project is located, customary land tenure applies. Thereby, women are structurally discriminated since they are not entitled to own land. However, user rights grant women and non-landowning men access to land and associated resources. Following the investing development banks’ guidelines, the company considered the local customary law when implementing its project. Nevertheless, the company only consulted and compensated landowners although women and non-landowning men could previously benefit from acquired land as well. Moreover, the company’s policy to enhance employment possibilities for women is barely implemented, and only few local women are hired. In order to cope with the transformed situation some women and non-landowning men continue to engage in subsistence farming on a reduced area of land. Others are involved in informal petty-trade or cooking food for the labourers whereby they subsidize the capitalist production of the company. In one village, women resisted additional land takes of the company. Acting within the framework of a specific power constellation on community level and simultaneously accommodating their claims within policy paradigms on transnational level, they were able to force a landowner to refuse leasing land to the company.
Resumo:
In many parts of the eastern African region wood-based fuels will remain dominant sources of energy in coming decades. Pressure on forests, especially in semi-arid areas will therefore continue increasing. In this context, the role of liquid biofuels as substitutes for firewood and charcoal, to help reducing pressure on woody biomass and contributing to a better energy security of rural communities, has remained controversial among researchers and practitioners. At household level, the economic and technical feasibility of straight vegetable oil (SVO) was assessed mainly on Jatropha curcas, with unpersuasive results. So far nothing is known about the suitability as an energy carrier of Jatropha mahafalensis Jum. & H. Perrier, the only endemic representative of the Jatropha genus in Madagascar. This paper explores the potential of this plant as a biofuel feedstock in the agro-pastoral area of Soalara, in the semi-arid south-western part of Madagascar. Only hedge-based production was considered to rule out competition over land with food crops. Yield data, the length of currently existing hedges and energy consumption patterns of households were used to assess the quantitative potential and economic viability of J. mahafalensis SVO for lighting and cooking. Tests were conducted with cooking and lighting devices to assess their technical suitability at household level. The paper concludes that J. mahafalensis hedges have some potential to replace paraffin for lighting (though without much economic benefit for the concerned households), but not to replace charcoal or firewood for cooking. The paper recommends that rural energy strategies in similar contexts do not focus only on substituting current fuels with SVO, but should also take into consideration other alternatives. In the case of cooking, there seems to be substantially more potential in increasing the efficiency of current fuel production and consumption technologies (kilns and stoves); and in the case of lighting, solutions based on SVO need to be compared against other options such as portable solar devices.
Resumo:
A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70% of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20%in winter and 40%in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.
Resumo:
The so-called Dutch Pranketing Room of Alethea Talbot, Countess of Arundel, at Tart Hall was a site of domestic experiments, courtly splendour and global ambition. Lady Arundel, the probable author of a famous recipe book, would have used Tart Hall for cooking and experiments as well as for impressive dinner parties, and she would have used large amounts of sugar to create intricate imitations of meat and vegetables to astonish, entertain and delight her guests. Linking household practice with global trade as well as artistic creation, Lady Arundel’s banquets are situated not only between a national tradition of cooking, as it appears in Markham’s manuals, and the new possibilities the arising global trade provided, but also played with a mismatch between taste and sight. This mediating role could be compared to that played by the artists the Countess employed. Within this context it is worth noting that a series of paintings displayed in the building’s gallery showed still lifes, markets, and a cook. The inventory of Tart Hall gives an insight into the world of the widely travelled collector and patron of Van Dyck and Rubens, but raises also a number of questions. In my talk I would like to explore the Countess’ Pranketing Room as a site of mediation between alimentary and painterly experiments, considering the use of recipes, experience, invention and transformation
Resumo:
Breast cancer is the most common cancer in women in the United States and is a leading cause of cancer-related deaths (1). Recently, dietary heterocyclic amines (HCAs) have been proposed to be a risk factor for breast cancer (2). This study uses the data collected for a case-control study conducted at the M.D. Anderson Cancer Center to assess the association between breast cancer risk and HCAs {2-amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo [4,5-f] quinoxaline (DiMeIQx) and mutagenicity of HCAs} and to examine if this association is modified by genetic polymorphisms of N-acetyl transferases (NAT1/NAT2). The NAT1/2 genotype was determined using Taqman technology. HCAs were estimated by using a meat preparation questionnaire on meat type, cooking method, and doneness, combined with a quantitative HCA database. Three hundred and fifty patients with breast cancer attending the Diagnostic Radiology Clinic at M. D. Anderson Cancer Center and fulfilling the eligibility criteria were compared to three hundred and fifty patients attending the same clinic for benign breast lesions to answer these questions. Logistic regression models were used to control for known risk factors and showed no statistically significant association between breast cancer versus benign breast cancer lesions and dietary intake of heterocyclic amines. There was no clear difference in their effect after subgroup analyses in different acetylator strata of NAT1/2 and no statistical interactions were found between NAT1/2 genotypes and HCAs, suggesting no effect modification by NAT1/2 acetylator status. These results suggest the need for further research to analyze if these null associations were because of the benign breast lesions sharing the risk factors with breast cancer or any other factors which haven't been explored yet.^
Resumo:
Existing literature examining the association between occupation and asthma has not been adequately powered to address this question in the food preparation or food service industries. Few studies have addressed the possible link between occupational exposure to cooking fumes and asthma. This secondary analysis of cohort study data aimed to investigate the association between adult-onset asthma and exposure to: (a) cooking fumes at work or (b) longest-held employment in food preparation or food service (e.g. waiters and waitresses, food preparation workers, non-restaurant food servers, etc.). Participants arose from a cohort of Mexican-American women residing in Houston, TX, recruited between July 2001 and June 2007. This analysis used Cox proportional-hazards regression to estimate the hazard ratio of adult-onset asthma given the exposures of interest, adjusting for age, BMI, smoking status, acculturation, and birthplace. We found a strong association between adult-onset asthma and occupational exposure to cooking fumes (hazard ratio [HR] = 1.77; 95% confidence interval [CI], 1.15, 2.72), especially in participants whose longest-held occupation was not in the food-related industry (HR = 2.12; 95% CI, 1.21, 3.60). In conclusion, adult-onset asthma is a serious public health concern for food industry workers. ^
Resumo:
Transitional homes present a window of opportunity to address the nutrition-related chronic diseases of previously incarcerated women. However, few transitional facilities offer nutrition education programs. This study assesses the nutritional status of 9 previously incarcerated women living at a transitional home in Houston, Texas and makes recommendations for effective nutrition education programs. Data was collected through individual interviews, questionnaires and a 24-hour dietary recall. Participants differed significantly from national nutrition recommendations when comparing BMI values and fruit, vegetable and fiber intake. Qualitative interview themes concerned key barriers to healthful dietary intake such as inadequate food storage and inconvenient cooking environment. Nutrition education programs at transitional homes should focus on healthy meals and snacks that can be quickly prepared and easily stored in small spaces. ^
Resumo:
Nitrogen dioxide (NO$\sb2)$ levels in sixteen substandard houses located in Houston, Texas were examined. The classification of the houses as substandard was based on an assessment of structural integrity which would affect air exchange rates. In these homes, unvented gas space heaters were operated as the primary source of heat.^ The Ogawa passive sampling device was used to measure NO$\sb2$ concentrations over 24 to 48-hour periods during generally cold weather. A sampler was placed in the kitchen and bedroom of each house. The female head of household was asked to wear a monitor during area monitoring to assess her personal exposure. Outdoor levels of NO$\sb2$ were also measured.^ Mean (standard deviation) levels of kitchen, bedroom and personal exposures were 280 (125) ppb, 256 (155) ppb and 164 (102) ppb, respectively. Additional short-term ($<$24 hours) samples were measured in three houses. The mean level of NO$\sb2$ measured outdoors was 51 ppb over the course of the study.^ The measurements obtained with the Ogawa sampler were compared to those levels obtained using a reference method (chemiluminescence). Outdoor levels measured with the diffusion samplers were 48% higher.^ These results suggest that wintertime NO$\sb2$ levels within substandard houses using gas appliances for heating and cooking are extremely elevated. Further work is needed to investigate the prevalence of possible health effects associated with these exposures. ^
Resumo:
Hot foods served in foodservice establishments, institutions and homes, have always been regarded as safe, since cooking temperatures are more likely to kill the bacterial agents that may cause foodborne diseases. However, foods that are otherwise served hot have been epidemiologically incriminated for causing foodborne diseases. This situation arises due to the possible post-cooking food contamination. Post-cooking contamination of hot-held food is most threatening for it gives the contaminating agents the possibility of proliferation. On one hand, post-cooking contamination is least understood and on the other, hot-holding of food gives the consumer a false sense of freedom from foodborne diseases. In this study, the dynamics of food contamination before or after cooking and during hot-holding are discussed and a food contamination dynamics model is presented.^ The literature on foodborne cholera, cholera-like diarrhea, shigellosis and E. coli gastroenteritis together with the literature on the occurrence and growth of the causative enteropathogens; 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli were reviewed. The literature on the infective doses of these organisms were also cited.^ In the study, four cooked food types held hot at 40-60(DEGREES)C were deliberately contaminated with 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli, one at a time at each of the hot-holding temperatures. Tested food samples for the recovery of these enteropathogens were withdrawn at various time intervals of hot holding.^ The results showed bacterial recovery to decline with increasing temperature and with increasing hot-holding time within each holding temperature. All the bacterial types except V. cholerae were recovered even after holding the food at 60(DEGREES)C for one hour. V. cholerae was not recovered after hot-holding the food at 50-60(DEGREES)C at certain holding periods. After 48 hrs incubation, V. cholerae was recovered on TCBS agar plates that read negative after the initial 24 hrs of incubation. Effective hot-holding temperatures were determined for each of the food types contaminated by each of the bacterial types.^ Statistical analysis of the collected data showed temperature, bacterial type and their interaction to be significant in enteropathogen recovery. Food type and its interactions with temperature and bacterial type were found not significant. ^
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
Manufactured housing has been found to have substantial levels of formaldehyde in the indoor air. Because mobile homes are more affordable than conventional housing, there has been a large increase in their use in the U.S. This increase in mobile home use has been substantial in the sunbelt regions such as Texas, where high temperatures and humidities may enhance out-gassing of formaldehyde and other volatile organic compounds from construction and furnishing materials and increase any potential health hazards.^ The influences of environmental, architectural and temporal factors on the presence of indoor formaldehyde and other organic compounds were investigated in conjunction with the Texas Indoor Air Quality Study of manufactured housing. A matched pair of mobile homes, one with electric heating and cooking utilities and the other with propane gas utilities, were used for a series of controlled experiments over a fourteen month period from October, 1982 through November, 1983.^ Over this fourteen month period formaldehyde levels decreased approximately 33%. Daily fluctuations of 20% to 40% were observed even with a constant indoor temperature. An increase in indoor temperature of 8(DEGREES)C doubled the measured formaldehyde concentration. Opening windows resulted in decreases of indoor formaldehyde levels of up to 50%. Studies of the impact of propane as a cooking source showed no increase in formaldehyde levels with stove use.^ The presence and concentration of selected volatile organic compounds is influenced greatest by occupancy. Occupants continually open and close windows and doors, vary the operation and settings (temperature) of air control systems, and vary in their selection of furnishings and use of consumer products, which may act as sources of indoor air contaminants. ^
Resumo:
The Annual Biochemical Engineering Symposium Series started in 1970 when Professors Larry E. Erickson (Kansas State University) and Peter J. Reilly (then with University of Nebraska-Lincoln) got together in Manhattan, KS along with their students for a half-day powwow and technical presentation by their students. Ever since then, it has been a forum for Biochemical Engineering students in the heartland of USA to present their research to their colleagues in the form of talks and posters. The institutions actively involved with this annual symposium include Colorado State University, Kansas State University, Iowa State University, University of Colorado, University of Kansas, University of Missouri-Columbia, and University of Oklahoma. The University of lowa and University of Nebraska-Lincoln have also participated in the conference in recent years. The host institutions for the different symposia have been: Kansas State University (1, 3, 5, 9, 12, 16, 20), Iowa State University (6, 7, 10, 13, 17, 22), University of Missouri-Columbia (8, 14, 19, 25), Colorado State University (II, 15, 21), University of Colorado (18, 24), University of Nebraska-Lincoln (2, 4), University of Oklahoma (23). The next symposium will be held at Kansas State University. Proceedings of the Symposium are edited by faculty of the host institution and include manuscripts written and submitted by the presenters (students). These often include works-in-progress and final publication usually takes place in refereed journals. ContentsPatrick C. Gilcrease and Vincent G. Murphy, Colorado State University. Use of 2,4,6-Trinitrotoluene (TNT) As A Nitrogen Source By A Pseudomonas florescens Species Under Aerobic Conditions. Marulidharan Narayanan, Lawrence C. Davis, and Larry E. Erickson, Kansas State University. Biodegradation Studies of Chlorinated Organic Pollutants in a Chamber in the Presence of Alfalfa Plants. S.K. Santharam, L.E. Erickson, and L.T. Fan, Kansas State University.Surfactant-Enhanced Remediation of a Non-Aqueous Phase Contaminant in Soil. Barry Vant-Hull, Larry Gold, and Robert H. Davis, University of Colorado.The Binding of T7 RNA Polymerase to Double-Stranded RNA. Jeffrey A. Kern and Robert H. Davis, University of Colorado.Improvement of RNA Transcription Yield Using a Fed-Batch Enzyme Reactor. G. Szakacs, M. Pecs, J. Sipocz, I. Kaszas, S.R. Deecker, J.C. Linden, R.P. Tengerdy, Colorado State University.Bioprocessing of Sweet Sorghum With In Situ Produced Enzymes. Brad Forlow and Matthias Nollert, University of Oklahoma.The Effect of Shear Stress ad P-selectin Site Density on the Rolling Velocity of White Blood Cells. Martin C. Heller and Theodore W. Randolph, University of Colorado.The Effects of Plyethylene Glycol and Dextran on the Lyophilization of Human Hemoglobin. LaToya S. Jones and Theodore W. Randolph, University of Colorado.Purification of Recombinant Hepatitis B Vaccine: Effect of Virus/Surfactant Interactions. Ching-Yuan Lee, Michael G. Sportiello, Stephen Cape, Sean Ferree, Paul Todd, Craig E. Kundrot, and Cindy Barnes, University of Colorado.Application of Osmotic Dewatering to the Crystallization of Oligonucleotides for Crystallography. Xueou Deng, L.E. Erickson, and D.Y.C. Fung, Kansas State University.Production of Protein-Rich Beverages from Cheese Whey and Soybean by rapid Hydration Hydrothermal Cooking. Pedro M. Coutinho, Michael K. Dowd, and Peter J. Reilly, Iowa State University.Automated Docking of Glucoamylase Substrates and Inhibitors. J. Johansson and R.K. Bajpai, University of Missouri.Adsorption of Albumin on Polymeric Microporous Membranes.
Resumo:
En este trabajo propongo analizar el rol asignado a las mujeres peronistas y a las unidades básicas femeninas del Partido Peronista Femenino como promotoras del ahorro y la economía doméstica dentro del Plan Económico de Austeridad y el 2° Plan Quinquenal. Luego de la amplia confirmación de la popularidad del gobierno obtenida en las elecciones de noviembre de 1951, el presidente Perón consideró oportuno producir una rectificación y un ajuste en el rumbo de la política económica. Se trataba de una serie de medidas imprescindibles para superar una coyuntura que se tornaba crítica, y que se resumían en el aumento de la producción y la austeridad en el consumo. Esta última responsabilidad recayó en la mujeres - amas de casa amparadas en la acción de las unidades básicas femeninas que actuaron como consejeras y promotoras de los planes de austeridad implementando una serie de medidas que iban desde la cursos de cocina que enseñaban a cocinar con productos alternativos y más económicos hasta la fiscalización de los comercios que no cumplían con los precios máximos oficiales.
Resumo:
En este trabajo propongo analizar el rol asignado a las mujeres peronistas y a las unidades básicas femeninas del Partido Peronista Femenino como promotoras del ahorro y la economía doméstica dentro del Plan Económico de Austeridad y el 2° Plan Quinquenal. Luego de la amplia confirmación de la popularidad del gobierno obtenida en las elecciones de noviembre de 1951, el presidente Perón consideró oportuno producir una rectificación y un ajuste en el rumbo de la política económica. Se trataba de una serie de medidas imprescindibles para superar una coyuntura que se tornaba crítica, y que se resumían en el aumento de la producción y la austeridad en el consumo. Esta última responsabilidad recayó en la mujeres - amas de casa amparadas en la acción de las unidades básicas femeninas que actuaron como consejeras y promotoras de los planes de austeridad implementando una serie de medidas que iban desde la cursos de cocina que enseñaban a cocinar con productos alternativos y más económicos hasta la fiscalización de los comercios que no cumplían con los precios máximos oficiales.