973 resultados para Constrained evolutionary optimization
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Univ., Dissertation, 2015
Resumo:
n.s. no.91(1999)
Resumo:
v.22:no.3(1938)
Resumo:
The paper documents MINTOOLKIT for GNU Octave. MINTOOLKIT provides functions for minimization and numeric differentiation. The main algorithms are BFGS, LBFGS, and simulated annealing. Examples are given.
Resumo:
This paper analyzes the role of financial development as a source of endogenous instability in small open economies. By assuming that firms face credit constraints, our model displays a complex dynamic behavior for intermediate values of the parameter representing the level of financial development of the economy. The basic implication of our model is that economies experiencing a process of financial development are more unstable than both very underdeveloped and very developed economies. Our instability concept means that small shocks have a persistent effect on the long run behavior of the model and also that economies can exhibit cycles with a very high period or even chaotic dynamic patterns.
Resumo:
Recently, several school districts in the US have adopted or consider adopting the Student-Optimal Stable Mechanism or the Top Trading Cycles Mechanism to assign children to public schools. There is clear evidence that for school districts that employ (variants of) the so-called Boston Mechanism the transition would lead to efficiency gains. The first two mechanisms are strategy-proof, but in practice student assignment procedures impede students to submit a preference list that contains all their acceptable schools. Therefore, any desirable property of the mechanisms is likely toget distorted. We study the non trivial preference revelation game where students can only declare up to a fixed number (quota) of schools to be acceptable. We focus on the stability of the Nash equilibrium outcomes. Our main results identify rather stringent necessary and sufficient conditions on the priorities to guaranteestability. This stands in sharp contrast with the Boston Mechanism which yields stable Nash equilibrium outcomes, independently of the quota. Hence, the transition to any of the two mechanisms is likely to come with a higher risk that students seek legal actionas lower priority students may occupy more preferred schools.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
It is often alleged that high auction prices inhibit service deployment. We investigate this claim under the extreme case of financially constrained bidders. If demand is just slightly elastic, auctions maximize consumer surplus if consumer surplus is a convex function of quantity (a common assumption), or if consumer surplus is concave and the proportion of expenditure spent on deployment is greater than one over the elasticity of demand. The latter condition appears to be true for most of the large telecom auctions in the US and Europe. Thus, even if high auction prices inhibit service deployment, auctions appear to be optimal from the consumers' point of view.
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar
Resumo:
The literature on school choice assumes that families can submit a preference list over all the schools they want to be assigned to. However, in many real-life instances families are only allowed to submit a list containing a limited number of schools. Subjects' incentives are drastically affected, as more individuals manipulate their preferences. Including a safety school in the constrained list explains most manipulations. Competitiveness across schools play an important role. Constraining choices increases segregation and affects the stability and efficiency of the final allocation. Remarkably, the constraint reduces significantly the proportion of subjects playing a dominated strategy.
Resumo:
Pleistocene glacial and interglacial periods have moulded the evolutionary history of European cold-adapted organisms. The role of the different mountain massifs has, however, not been accurately investigated in the case of high-altitude insect species. Here, we focus on three closely related species of non-flying leaf beetles of the genus Oreina (Coleoptera, Chrysomelidae), which are often found in sympatry within the mountain ranges of Europe. After showing that the species concept as currently applied does not match barcoding results, we show, based on more than 700 sequences from one nuclear and three mitochondrial genes, the role of biogeography in shaping the phylogenetic hypothesis. Dating the phylogeny using an insect molecular clock, we show that the earliest lineages diverged more than 1 Mya and that the main shift in diversification rate occurred between 0.36 and 0.18 Mya. By using a probabilistic approach on the parsimony-based dispersal/vicariance framework (MP-DIVA) as well as a direct likelihood method of state change optimization, we show that the Alps acted as a cross-roads with multiple events of dispersal to and reinvasion from neighbouring mountains. However, the relative importance of vicariance vs. dispersal events on the process of rapid diversification remains difficult to evaluate because of a bias towards overestimation of vicariance in the DIVA algorithm. Parallels are drawn with recent studies of cold-adapted species, although our study reveals novel patterns in diversity and genetic links between European mountains, and highlights the importance of neglected regions, such as the Jura and the Balkanic range.