963 resultados para Confederate States of America. Army of Northern Virginia
Resumo:
We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.
Resumo:
This paper presents an experimental study on damage assessment of reinforced concrete (RC) beams subjected to incremental cyclic loading. During testing acoustic emissions (AEs) were recorded. The analysis of the AE released was carried out by using parameters relaxation ratio, load ratio and calm ratio. Digital image correlation (DIC) technique and tracking with available MATLAB program were used to measure the displacement and surface strains in concrete. Earlier researchers classified the damage in RC beams using Kaiser effect, crack mouth opening displacement and proposed a standard. In general (or in practical situations), multiple cracks occur in reinforced concrete beams. In the present study damage assessment in RC beams was studied according to different limit states specified by the code of practice IS-456:2000 and AE technique. Based on the two ratios namely load ratio and calm ratio and when the deflection reached approximately 85% of the maximum allowable deflection it was observed that the RC beams were heavily damaged. The combination of AE and DIC techniques has the potential to provide the state of damage in RC structures.
Resumo:
We demonstrate electronic energy transfer between resonance states of 2 and 2.8 nm CdTe quantum dots in aqueous media using steady-state photoluminescence spectroscopy without using any external linker molecule. With increasing concentration of larger dots, there is subsequent quenching of luminescence in smaller dots accompanied by the enhancement of luminescence in larger dots. Our experimental evidence suggests that there is long-range resonance energy transfer among electronic excitations, specifically from the electronically confined states of the smaller dots to the higher excited states of the larger dots.
Resumo:
Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C-2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet triplet gap is only wealdy affected. In all the systems we have studied, the excited singlet state, S-i, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S-1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.
Resumo:
We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi-2 Se-3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
Resumo:
Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.
Resumo:
The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR3) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (mu s). Interestingly, TR3 spectra of these two bands indicate that the kinetics are different at shorter time scales (ns), while at longer time scales they followed the kinetics of ns-TRA spectra. Therefore, we report a real-time observation of the thermal equilibrium between the two lowest triplet excited states of PQ assigned to n pi* and pi pi* of which the pi pi* triplet state is formed first through intersystem crossing. Despite the fact that these two states are energetically close and have a similar conformational structure supported by TD-DFT studies, the slow internal conversion (similar to 2 ns) between the T-2(1(3)n pi*) and T-1(1(3)pi pi*) triplet states indicates a barrier. Insights from the singlet excited states of PQ in protic solvents J. Chem. Phys. 2015, 142, 24305] suggest that the lowest n pi* and pi pi* triplet states should undergo hydrogen bond weakening and strengthening, respectively, relative to the ground state, and these mechanisms are substantiated by TD-DFT calculations. We also hypothesize that the different hydrogen bonding mechanisms exhibited by the two lowest singlet and triplet excited states of PQ could influence its ISC mechanism.
Resumo:
The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.
Resumo:
Existing models of baroclinic tides are based upon the "traditional approximation'', i. e., neglect of the horizontal component of the Earth's rotation, leading to a well- known conclusion that no freely propagating internal waves can exist beyond the critical latitude and the wave rays are symmetric to the vertical. However, recent studies have contended that the situation may change if both the vertical and horizontal components of the Earth's rotation are taken into account. With the full account of the Coriolis force, characteristics of the internal wavefield generated by tidal flow over uneven topography are investigated. It is found that "nontraditional effects'' profoundly change not only the dynamics of internal waves but also the rate at which the barotropic tidal energy is fed into the internal wavefield. Discarding the traditional approximation, internal waves are proved to be able to generate poleward of the critical latitude, rays of which are no longer symmetric and the limiting values of ray angles become greater or less than 90 degrees, depending on the local latitude and the direction of ray. More importantly, in contrast to the predictions of models based upon the traditional approximation, a substantial conversion occurs in the situations when stratification is so weak that the buoyancy frequency is below the tidal one.
Resumo:
(PDF contains 241 pages)
Resumo:
Red drum is one ofthe most popular species sought by anglers in Florida Bay, yet juveniles are rarely encountered. We evaluated Florida Bay as a nursery area for red drum by sampling for recently-settled late larvae in basin areas within the bay with an epi-benthic sled at six stations in November 2000, and at seven stations during December 2000 through February 2001. In November 2000 we surveyed potential sampling sites in quiet backwaters adjacent to mangroves for juvenile red drum. A total of 202 sites were sampled mainly in northern Florida Bay and adjacent waters with a cast net. We collected only one recently-settled red drum larvae and no juveniles. Obviously the sites that we sampled in Florida Bay and adjacent waters are not nursery habitat for this valuable species. Sled collections were dominated by bay anchovy, Anchoa mitchilli, but densities were biased by one collection. Five small resident species were among the dominant species: rainwater killifish, Lucania parva; dusky pipefish, Syngnathus floridae; dwarf seahorse, Hippocampus zosterae; and clown goby, Microgobius gulosus. Three species that spawn outside Florida Bay in the GulfofMexico were common: pinfish, Lagodon rhomboides; pigfish, Orthopristis chrysoptera; and silver perch, Bairdiella chrysoura. Twenty-seven species were collected with the cast net. Hardhead silversides (Atherinomorus stipes), bay anchovy, tidewater mojarra (Eucinostomus harengulus), silver jenny (Eucinostomus gula), and goldspotted killifish (Floridichthys carpio) were the most common in cast net collections. Although only one red drum was collected, we were able to: (1) identify mesohaline waters from our cast net sites to test our preliminary assessment that mesohaline habitat might be limited in Florida Bay, (2) document the distribution and abundance of fishes collected by cast net that should enhance our understanding of ichthyofauna in the Northern Subdivision ofFlorida Bay and adjacent waters, and (3) from epibenthic sled collections, describe the habitats, abundance and distribution of recently settled larvae/small juveniles/small resident fishes during late fall and winter. This information should be useful to managers and future research. (PDF contains 34 pages)
Resumo:
We investigated within- and between-reader precision in estimating age for northern offshore spotted dolphins and possible effects on precision from the sex and age-class of specimens. Age was estimated from patterns of growth layer groups i n the dentine and cementum of the dolphins' teeth. Each specimen was aged at least three times by each of two persons. Two data samples were studied. The first comprised 800 of each sex from animals collected during 1973-78. The second included 45 females collected during 1981. There were significant, generally downward trends through time in the estimates from multiple readings of the 1973-78 data. These trends were slight, and age distributions from last readings and mean estimates per specimen appeared to be homogeneous. The largest factor affecting precision in the 1973-78 data set was between-reader variation. In light of the relatively high within-reader precision (trends considered), the consistent between-reader differences suggest a problem of accuracy rather than precision for this series. Within-reader coefficients of variation averaged approximately 7% and 11%. Pooling the data resulted i n an average coefficient of variation near 16%. Within- and between-reader precision were higher for the 1981 sample, and the data homogeneous over both factors. CVs averaged near 5% and 6% for the two readers. These results point to further refinements in reading the 1981 series. Properties of the 1981 sample may be partly responsible for greater precision: by chance there were proportionately fewer older dolphins included, and preparation and selection criteria were probably more stringent. (PDF contains 35 pages.)
Resumo:
10 p.