990 resultados para Conduction Mechanism
Resumo:
The photochemically induced reductive elimination of cyclopropanes from bis(η5-cyclopentadienyl)titanacyclobutanes has been examined. Stereochemical labelling studies indicate that the cyclopropane is initially formed in a 6±1:1, ratio favoring retention of stereochemistry. The starting titanacyclobutane is isomerized during the course of the reaction. The isomerization of the starting material results from metal-carbon bond homolysis to yield a 1,4-biradical, which can either close to give the starting material or generate cyclopropane. The 1,4-biradical can be observed through a cyclopropyl carbinyl rearrangement employing 2-bis(η5- cyclopentadienyl)titana-5,5-dimethylbicyclo[2.1.0]pentane, to give the titanium alkylidene, 1-bis(η5-cyclopentadienyl)titana-3,3-dimethyl-1,4- pentadiene, which can be observed directly by NMR at low temperature.
The oxidation of titanacyclobutanes by chemical and electrochemical methods also yields cyclopropanes. Reduction of the metal center does not yield cyclopropanes. Depending on the oxidant, stereochemically labelled titanacyclobutanes yield cyclopropanes that are between 7:1 and 100:1 retention:isomerization. The fragmentation reaction resembles the photochemically induced reductive elimination. Both result from formal oxidation of a metal-carbon bond, which then results in very rapid formation of cyclopropane.
The titanocene generated photochemically reacts with a variety of substrates even at low temperature. Titanocene can be generated in a glass at 77 K. The titanocene can be trapped in noncoordinating solvents in high yield with bulky internal acetylenes to give monoacetylene adducts of titanocene. Less bulky acetylenes give the titanacyclopentadienes. The titanocene can be trapped with olefins to give less stable adducts, which appear by NMR analysis to be intermediate in structure between a titanacyclopropane and an η2 olefin adduct of titanocene. Reaction of titanocene with butadiene gives a stable product, which appears to be the s-trans butadiene adduct of titanocene. It does not isomerize on heating. Titanocene reacts with epoxides to give titanocene-µ-oxo polymer and olefin. Stereochemically labelled epoxides and episulfides yield isomerized olefin upon deoxygenation by titanocene. The observations are rationalized as a result of a 1,4-biradical formed by stepwise insertion of titanocene into a carbon-oxygen bond.
Resumo:
The behaviour in the feeding process and the functional morphology of Lathonura rectirostris O.F. Muller - one of the widely distributed species of macrothricids - is studied. The current work is an attempt at morpho-functional analysis of the apparatus of the trunk appendages of Lathonura rectirostris O.F. Muller. This highly specialized species, the method of feeding of which basically comes to the mechanical scraping-off and collection of epiphytic single-celled algae and particles deposited on the surface of aquatic plants.
Resumo:
Cases of red colouration in small lake basins, due to the abundant appearance of microorganisms have long been known. Usually it is caused by a fast, sudden, intensive propagation (so called ”bloom”) of Cyanophycae and bacteria. (e.g. Oscillatoracae, thiobacteria etc.). An exception to this is the red colouration of Tovel-See, an alpine lake basin in the Dolomites of the Brenta group (Trentino), lying at a height of 1178 m and hidden in the woodland of a valley. Here the red bloom has a double rhythm: a daily and a yearly rhythm. The colouration of one part of the lake takes place in the warmest months of the year (i.e. July, August, September) and in the middle hours of the day. The immediate origin of the bloom has been known for a long time: it is caused by the Peridinacae Glenodinium sanguineum. This paper describes the phenomenon of red colouration of the lake and discusses its conditions.
Resumo:
Part I
A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.
The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.
The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.
Part II
The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.
For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.
The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.
Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.
Resumo:
This partial translation of the original paper provides the summary of this study of the mechanism of mass transfer in the formation of hydrothermal deposits of sulphides. For determining the solubility of sulphides of iron, the radioactive isotope Fe59 was used. The solubility of two sulphides was determined.
Resumo:
Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.
As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.
The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.
Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.
Resumo:
Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).
The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.
The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.
Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.
Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.
The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.
Resumo:
The plant Crassula helmsii (Kirk) Cochayne, was likely to become widely distributed and to dominate many damp and wet areas of nature reserves, recreational waters and agricultural drainage of Britain. The aim of this report was to study Australian Swamp Stonecrop in its natural habitat where it is in balance with its environment. This contrasts with its rapid and widespread distribution in the U.K. where its growth interferes with the use of fisheries and amenity lakes but also reduces the value of nature reserves and sites of special scientific interest by suppressing native flora. It was proposed to observe its growth at a variety of sites over its natural distribution and to include some environmental factors, e.g. water-level, water-chemistry (nutrients, acidity and alkalinity), frost-tolerance, salinity, with the help of portable sensors, locally-available services or data. 8 weeks of travel in Australia allowed time to study the plant in its natural habitat including the coastal areas of the southern half of the continent i.e . Western Australia, South Australia, New South Wales, Victoria, Tasmania and southern Queensland. The overall objective was to determine the environmental range by visits to selected sites of Crassula helmsii over its geographic range.
Resumo:
The thermal reaction between nitrogen dioxide and acetaldehyde in the gas phase was investigated at room temperature and atmospheric pressure. The initial rate of disappearance of nitrogen dioxide was 1.00 ± 0.03 order with respect to nitrogen dioxide and 1.00 ± 0.07 order with respect to acetaldehyde. An initial second order rate constant of (8.596 ± 0.189) x 10-3 1.mole-1 sec-1 was obtained at 22.0 ± 0.1 °C and a total pressure of one atmosphere. The activation energy of the reaction was 12,900 cal/mole in the temperature range between 22°C and 122°C.
The products of the reaction were nitric oxide, carbon dioxide, methyl nitrite, nitromethane and a trace amount of trans-dimeric nitrosomethane. The addition of nitric oxide increased the rate of formation of nitromethane and decreased the rate of formation of methyl nitrite. There were no measurable surface effects due to the addition of glass wool or glass beads to the reactor.
Reactants and products were analyzed by gas chromatography. A mechanism was proposed incorporating the principal features of the reaction.
Resumo:
A mathematical model is proposed in this thesis for the control mechanism of free fatty acid-glucose metabolism in healthy individuals under resting conditions. The objective is to explain in a consistent manner some clinical laboratory observations such as glucose, insulin and free fatty acid responses to intravenous injection of glucose, insulin, etc. Responses up to only about two hours from the beginning of infusion are considered. The model is an extension of the one for glucose homeostasis proposed by Charette, Kadish and Sridhar (Modeling and Control Aspects of Glucose Homeostasis. Mathematical Biosciences, 1969). It is based upon a systems approach and agrees with the current theories of glucose and free fatty acid metabolism. The description is in terms of ordinary differential equations. Validation of the model is based on clinical laboratory data available at the present time. Finally procedures are suggested for systematically identifying the parameters associated with the free fatty acid portion of the model.
Resumo:
Silver nanowires in large quantities can be obtained through a simple method in the absence of a surfactant or polymer and without addition of external seeding nanocrystallites. A plausible mechanism was proposed to elucidate the formation mechanism of silver nanowires based on TEM studies.