997 resultados para Condensed Tannins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed analysis of the photocapacitance signal at the near‐band and extrinsic energetic ranges in Schottky barriers obtained on horizontal Bridgman GaAs wafers, which were implanted with boron at different doses and annealed at several temperatures, has been carried out by using the optical isothermal transient spectroscopy, OITS. The optical cross sections have been determined as well as the quenching efficiency of the EL2 level which has been found to be independent of the annealing temperature. Moreover, the quenching relaxation presents two significant features: (i) a strong increase of the quenching efficiency from 1.35 eV on and (ii) a diminution of the quenching transient amplitude in relation with that shown by the fundamental EL2 level. In order to explain this behavior, different cases are discussed assuming the presence of several energy levels, the existence of an optical recuperation, or the association of the EL2 trap with two levels located, respectively, at Ev+0.45 eV and Ec−0.75 eV. The theoretical simulation, taking into account these two last cases, is in agreement with the experimental photocapacitance data at low temperature, as well as at room temperature where the EL2 filling phototransient shows an anomalous behavior. Moreover, unlike the previous data reported for the EL2 electron optical cross section, the values found using our experimental technique are in agreement with the behavior deduced from the theoretical calculation. The utilization of the OITS method has also allowed the determination of another level, whose faster optical contribution is often added to that of the EL2 level when the DLOS or standard photocapacitance is used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, an analysis of the dark and optical capacitance transients obtained from Schottky Au:GaAs barriers implanted with boron has been carried out by means of the isothermal transient spectroscopy (ITS) and differential and optical ITS techniques. Unlike deep level transient spectroscopy, the use of these techniques allows one to easily distinguish contributions to the transients different from those of the usual deep trap emission kinetics. The results obtained show the artificial creation of the EL2, EL6, and EL5 defects by the boron implantation process. Moreover, the interaction mechanism between the EL2 and other defects, which gives rise to the U band, has been analyzed. The existence of a reorganization process of the defects involved has been observed, which prevents the interaction as the temperature increases. The activation energy of this process has been found to be dependent on the temperature of the annealing treatment after implantation, with values of 0.51 and 0.26 eV for the as‐implanted and 400 °C annealed samples, respectively. The analysis of the optical data has corroborated the existence of such interactions involving all the observed defects that affect their optical parameters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within a drift-diffusion model we investigate the role of the self-consistent electric field in determining the impedance field of a macroscopic Ohmic (linear) resistor made by a compensated semi-insulating semiconductor at arbitrary values of the applied voltage. The presence of long-range Coulomb correlations is found to be responsible for a reshaping of the spatial profile of the impedance field. This reshaping gives a null contribution to the macroscopic impedance but modifies essentially the transition from thermal to shot noise of a macroscopic linear resistor. Theoretical calculations explain a set of noise experiments carried out in semi-insulating CdZnTe detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relevant features of the dynamic structure function S(q,¿) in 3-4He mixtures at zero temperature are investigated starting from known properties of the ground state. Sum rules are used to fix rigorous constraints to the different contributions to S(q,¿), coming from 3He and 4He elementary excitations, as well as to explore the role of the cross term S(3,4)(q,¿). Both the low-q (phonon-roton 4He excitations and 1p-1h 3He excitations) and high-q (deep-inelastic-scattering) ranges are discussed.