763 resultados para Computer networks -- Security measures
Resumo:
Tässä luomistyössä on esitetty tutkimus informaation suojaamisen menetelmien osalta paikallisissa ja ryhmäkuntaisissa verkoissa. Tutkimukseen kuuluu nykyaikaisten kryptagraafisten järjestelmien, Internetin/Intranetin ohjelmointikeinojen ja pääsyoikeuksien jakelumenetelmien analyysi. Tutkimusten perusteella on laadittu ohjelmiston prototyyppi HTML-tiedostojen suojaamista varten. Ohjelmiston laatimisprosessi on sisältänyt vaatimusten, järjestelmän ja suojelukomponenttien suunnittelun ja protytyypin testauksen. Ohjelmiston realisoinnin jälkeen kirjoitettiin käyttöohjeet. Ohjelmiston prototyyppi suojaa informaatiota HTML-tiedoston koko käytön aikana ja eri yrityksissä voidaan käyttää sitä pienien laajennuksien jälkeen.
Resumo:
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.
Resumo:
Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
Resumo:
An efficient approach for organizing large ad hoc networks is to divide the nodesinto multiple clusters and designate, for each cluster, a clusterhead which is responsible forholding intercluster control information. The role of a clusterhead entails rights and duties.On the one hand, it has a dominant position in front of the others because it manages theconnectivity and has access to other node¿s sensitive information. But on the other hand, theclusterhead role also has some associated costs. Hence, in order to prevent malicious nodesfrom taking control of the group in a fraudulent way and avoid selfish attacks from suitablenodes, the clusterhead needs to be elected in a secure way. In this paper we present a novelsolution that guarantees the clusterhead is elected in a cheat-proof manner.
Resumo:
Cognitive radio networks sense spectrum occupancy and manage themselvesto operate in unused bands without disturbing licensed users. The detection capability of aradio system can be enhanced if the sensing process is performed jointly by a group of nodesso that the effects of wireless fading and shadowing can be minimized. However, taking acollaborative approach poses new security threats to the system as nodes can report falsesensing data to reach a wrong decision. This paper makes a review of secure cooperativespectrum sensing in cognitive radio networks. The main objective of these protocols is toprovide an accurate resolution about the availability of some spectrum channels, ensuring thecontribution from incapable users as well as malicious ones is discarded. Issues, advantagesand disadvantages of such protocols are investigated and summarized.
Resumo:
Peer-reviewed
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Resumo:
Wireless sensor networks and its applications have been widely researched and implemented in both commercial and non commercial areas. The usage of wireless sensor network has developed its market from military usage to daily use of human livings. Wireless sensor network applications from monitoring prospect are used in home monitoring, farm fields and habitant monitoring to buildings structural monitoring. As the usage boundaries of wireless sensor networks and its applications are emerging there are definite ongoing research, such as lifetime for wireless sensor network, security of sensor nodes and expanding the applications with modern day scenarios of applications as web services. The main focus in this thesis work is to study and implement monitoring application for infrastructure based sensor network and expand its usability as web service to facilitate mobile clients. The developed application is implemented for wireless sensor nodes information collection and monitoring purpose enabling home or office environment remote monitoring for a user.
Resumo:
Increase of computational power and emergence of new computer technologies led to popularity of local communications between personal trusted devices. By-turn, it led to emergence of security problems related to user data utilized in such communications. One of the main aspects of the data security assurance is security of software operating on mobile devices. The aim of this work was to analyze security threats to PeerHood, software intended for performing personal communications between mobile devices regardless of underlying network technologies. To reach this goal, risk-based software security testing was performed. The results of the testing showed that the project has several security vulnerabilities. So PeerHood cannot be considered as a secure software. The analysis made in the work is the first step towards the further implementation of PeerHood security mechanisms, as well as taking into account security in the development process of this project.
Resumo:
The question of the trainability of executive functions and the impact of such training on related cognitive skills has stirred considerable research interest. Despite a number of studies investigating this, the question has not yet been solved. The general aim of this thesis was to investigate two very different types of training of executive functions: laboratory-based computerized training (Studies I-III) and realworld training through bilingualism (Studies IV-V). Bilingualism as a kind of training of executive functions is based on the idea that managing two languages requires executive resources, and previous studies have suggested a bilingual advantage in executive functions. Three executive functions were studied in the present thesis: updating of working memory (WM) contents, inhibition of irrelevant information, and shifting between tasks and mental sets. Studies I-III investigated the effects of computer-based training of WM updating (Study I), inhibition (Study II), and set shifting (Study III) in healthy young adults. All studies showed increased performance on the trained task. More importantly, improvement on an untrained task tapping the trained executive function (near transfer) was seen in Study I and II. None of the three studies showed improvement on untrained tasks tapping some other cognitive function (far transfer) as a result of training. Study I also used PET to investigate the effects of WM updating training on a neurotransmitter closely linked to WM, namely dopamine. The PET results revealed increased striatal dopamine release during WM updating performance as a result of training. Study IV investigated the ability to inhibit task-irrelevant stimuli in bilinguals and monolinguals by using a dichotic listening task. The results showed that the bilinguals exceeded the monolinguals in inhibiting task-irrelevant information. Study V introduced a new, complementary research approach to study the bilingual executive advantage and its underlying mechanisms. To circumvent the methodological problems related to natural groups design, this approach focuses only on bilinguals and examines whether individual differences in bilingual behavior correlate with executive task performances. Using measures that tap the three above-entioned executive functions, the results suggested that more frequent language switching was associated with better set shifting skills, and earlier acquisition of the second language was related to better inhibition skills. In conclusion, the present behavioral results showed that computer-based training of executive functions can improve performance on the trained task and on closely related tasks, but does not yield a more general improvement of cognitive skills. Moreover, the functional neuroimaging results reveal that WM training modulates striatal dopaminergic function, speaking for training-induced neural plasticity in this important neurotransmitter system. With regard to bilingualism, the results provide further support to the idea that bilingualism can enhance executive functions. In addition, the new complementary research approach proposed here provides some clues as to which aspects of everyday bilingual behavior may be related to the advantage in executive functions in bilingual individuals.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.