833 resultados para Computational Intelligence
Resumo:
Fluid inteliigence has been defined as an innate ability to reason which is measured commonly by the Raven's Progressive Matrices (RPM). Individual differences in fluid intelligence are currently explained by the Cascade model (Fry & Hale, 1996) and the Controlled Attention hypothesis (Engle, Kane, & Tuholski, 1999; Kane & Engle, 2002). The first theory is based on a complex relation among age, speed, and working memory which is described as a Cascade. The alternative to this theory, the Controlled Attention hypothesis, is based on the proposition that it is the executive attention component of working memory that explains performance on fluid intelligence tests. The first goal of this study was to examine whether the Cascade model is consistent within the visuo-spatial and verbal-numerical modalities. The second goal was to examine whether the executive attention component ofworking memory accounts for the relation between working memory and fluid intelligence. Two hundred and six undergraduate students between the ages of 18 and 28 completed a battery of cognitive tests selected to measure processing speed, working memory, and controlled attention which were selected from two cognitive modalities, verbalnumerical and visuo-spatial. These were used to predict performance on two standard measures of fluid intelligence: the Raven's Progressive Matrices (RPM) and the Shipley Institute of Living Scales (SILS) subtests. Multiple regression and Structural Equation Modeling (SEM) were used to test the Cascade model and to determine the independent and joint effects of controlled attention and working memory on general fluid intelligence. Among the processing speed measures only spatial scan was related to the RPM. No other significant relations were observed between processing speed and fluid intelligence. As 1 a construct, working memory was related to the fluid intelligence tests. Consistent with the predictions for the RPM there was support for the Cascade model within the visuo-spatial modality but not within the verbal-numerical modality. There was no support for the Cascade model with respect to the SILS tests. SEM revealed that there was a direct path between controlled attention and RPM and between working memory and RPM. However, a significant path between set switching and RPM explained the relation between controlled attention and RPM. The prediction that controlled attention mediated the relation between working memory and RPM was therefore not supported. The findings support the view that the Cascade model may not adequately explain individual differences in fluid intelligence and this may be due to the differential relations observed between working memory and fluid intelligence across different modalities. The findings also show that working memory is not a domain-general construct and as a result its relation with fluid intelligence may be dependent on the nature of the working memory modality.
Resumo:
Ontario school principals’ professional development currently includes leadership training that encompasses emotional intelligence. This study sought to augment the limited research in the Canadian educational context on school leaders’ understanding of emotional intelligence and its relevancy to their work. The study utilized semi-structured interviews with 6 Ontario school principals representing disparate school contexts based on socioeconomic levels, urban and rural settings, and degree of ethnic diversity. Additionally, the 4 male and 2 female participants are elementary and secondary school principals in different public school boards and represent a diverse range of age and experience. The study utilized a grounded theory approach to data analysis and identified by 5 main themes: Self-Awareness, Relationship, Support, Pressure, and Emotional Filtering and Compartmentalization. Recommendations are made to further explore the emotional support systems available to school leaders in Ontario schools.
Resumo:
The use of theory to understand and facilitate catalytic enantioselective organic transformations involving copper and hydrobenzoin derivatives is reported. Section A details the use of theory to predict, facilitate, and understand a copper promoted amino oxygenation reaction reported by Chemler et al. Using Density Functional Theory (DFT), employing the hybrid B3LYP functional and a LanL2DZ/6-31G(d) basis set, the mechanistic details were studied on a N-tosyl-o-allylaniline and a [alpha]-methyl-[gamma]-alkenyl sulfonamide substrate. The results suggest the N-C bond formation proceeds via a cisaminocupration, and not through a radical-type mechanism. Additionally, the origin of diastereoselection observed with [alpha]-methyl-[gamma]-alkenyl sulfonamide arises from avoidance of unfavourable steric interactions between the methyl substituent and the N -protecting group. Section B details the computationally guided, experimental investigation of two hydrobenzoin derivatives as ligands/ catalysts, as well as the attempted synthesis of a third hydrobenzoin derivative. The bis-boronic acid derived from hydrobenzoin was successful as a Lewis acid catalyst in the Bignielli reaction and the Conia ene reaction, but provided only racemic products. The chiral diol derived from hydrobenzoin successfully increased the rate of the addition of diethyl zinc to benzaldehyde in the presence of titanium tetraisopropoxide, however poor enantioinduction was obseverved. Notably, the observed reactivity was successfully predicted by theoretical calculations.
Resumo:
Analysis of power in natural resources management is important as multiple stakeholders interact within complex, social-ecological systems. As a sub-set of these interactions, community climate change adaptation is increasingly using participatory processes to address issues of local concern. While some attention has been paid to power relations in this respect, e.g. evaluating international climate regimes or assessing vulnerability as part of integrated impact assessments, little attention has been paid to how a structured assessment of power could facilitate real adaptation and increase the potential for successful participatory processes. This paper surveys how the concept of power is currently being applied in natural resources management and links these ideas to agency and leadership for climate change adaptation. By exploring behavioural research on destructive leadership, a model is developed for informing participatory climate change adaptation. The working paper then concludes with a discussion of developing research questions in two specific areas - examining barriers to adaptation and mapping the evolution of specific participatory processes for climate change adaptation.
Towards reverse engineering of Photosystem II: Synergistic Computational and Experimental Approaches
Resumo:
ABSTRACT Photosystem II (PSII) of oxygenic photosynthesis has the unique ability to photochemically oxidize water, extracting electrons from water to result in the evolution of oxygen gas while depositing these electrons to the rest of the photosynthetic machinery which in turn reduces CO2 to carbohydrate molecules acting as fuel for the cell. Unfortunately, native PSII is unstable and not suitable to be used in industrial applications. Consequently, there is a need to reverse-engineer the water oxidation photochemical reactions of PSII using solution-stable proteins. But what does it take to reverse-engineer PSII’s reactions? PSII has the pigment with the highest oxidation potential in nature known as P680. The high oxidation of P680 is in fact the driving force for water oxidation. P680 is made up of a chlorophyll a dimer embedded inside the relatively hydrophobic transmembrane environment of PSII. In this thesis, the electrostatic factors contributing to the high oxidation potential of P680 are described. PSII oxidizes water in a specialized metal cluster known as the Oxygen Evolving Complex (OEC). The pathways that water can take to enter the relatively hydrophobic region of PSII are described as well. A previous attempt to reverse engineer PSII’s reactions using the protein scaffold of E. coli’s Bacterioferritin (BFR) existed. The oxidation potential of the pigment used for the BFR ‘reaction centre’ was measured and the protein effects calculated in a similar fashion to how P680 potentials were calculated in PSII. The BFR-RC’s pigment oxidation potential was found to be 0.57 V, too low to oxidize water or tyrosine like PSII. We suggest that the observed tyrosine oxidation in BRF-RC could be driven by the ZnCe6 di-cation. In order to increase the efficiency of iii tyrosine oxidation, and ultimately oxidize water, the first potential of ZnCe6 would have to attain a value in excess of 0.8 V. The results were used to develop a second generation of BFR-RC using a high oxidation pigment. The hypervalent phosphorous porphyrin forms a radical pair that can be observed using Transient Electron Paramagnetic Resonance (TR-EPR). Finally, the results from this thesis are discussed in light of the development of solar fuel producing systems.
Resumo:
Photosynthesis is a process in which electromagnetic radiation is converted into chemical energy. Photosystems capture photons with chromophores and transfer their energy to reaction centers using chromophores as a medium. In the reaction center, the excitation energy is used to perform chemical reactions. Knowledge of chromophore site energies is crucial to the understanding of excitation energy transfer pathways in photosystems and the ability to compute the site energies in a fast and accurate manner is mandatory for investigating how protein dynamics ef-fect the site energies and ultimately energy pathways with time. In this work we developed two software frameworks designed to optimize the calculations of chro-mophore site energies within a protein environment. The first is for performing quantum mechanical energy optimizations on molecules and the second is for com-puting site energies of chromophores in a fast and accurate manner using the polar-izability embedding method. The two frameworks allow for the fast and accurate calculation of chromophore site energies within proteins, ultimately allowing for the effect of protein dynamics on energy pathways to be studied. We use these frame-works to compute the site energies of the eight chromophores in the reaction center of photosystem II (PSII) using a 1.9 Å resolution x-ray structure of photosystem II. We compare our results to conflicting experimental data obtained from both isolat-ed intact PSII core preparations and the minimal reaction center preparation of PSII, and find our work more supportive of the former.
Resumo:
UANL
Resumo:
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).
Resumo:
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.
Resumo:
Récemment, nous avons pu observer un intérêt grandissant pour l'application de l'analogie formelle à l'analyse morphologique. L'intérêt premier de ce concept repose sur ses parallèles avec le processus mental impliqué dans la création de nouveaux termes basée sur les relations morphologiques préexistantes de la langue. Toutefois, l'utilisation de ce concept reste tout de même marginale due notamment à son coût de calcul élevé.Dans ce document, nous présenterons le système à base de graphe Moranapho fondé sur l'analogie formelle. Nous démontrerons par notre participation au Morpho Challenge 2009 (Kurimo:10) et nos expériences subséquentes, que la qualité des analyses obtenues par ce système rivalise avec l'état de l'art. Nous analyserons aussi l'influence de certaines de ses composantes sur la qualité des analyses morphologiques produites. Nous appuierons les conclusions tirées de nos analyses sur des théories bien établies dans le domaine de la linguistique. Ceci nous permet donc de fournir certaines prédictions sur les succès et les échecs de notre système, lorsqu'appliqué à d'autres langues que celles testées au cours de nos expériences.
Resumo:
Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.
Resumo:
Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).