988 resultados para Composite resins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of uncertainty in composite material properties on the aeroelastic response, vibratory loads, and stability of a hingeless helicopter rotor is investigated. The uncertainty impact on rotating natural frequencies of the blade is studied with Monte Carlo simulations and first-order reliability methods. The stochastic aeroelastic analyses in hover and forward flight are carried out with Monte Carlo simulations. The flap, lag, and torsion responses show considerable scatter from their baseline values, and the uncertainty impact varies with the azimuth angle. Furthermore, the blade response shows finite probability of resonance-type conditions caused by modal frequencies approaching multiples of the rotor speed. The 4/rev vibratory forces show large deviations from their baseline values. The lag mode damping shows considerable scatter due to uncertain material properties with an almost 40% probability of instability in hover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of epoxy resins having N-N bonds in their structure has been synthesized by reacting N,N'-aliphatic dicarboxyl bis(hydrazones) (the aldehyde/ketone derivatives of malonic, adipic, and sebacic dihydrazides) with epichlorohydrin. The reactivity of the[GRAPHICS] protons as a function of the substituent group and the number of methylene spacer groups present in the hydrazone has been examined. The resins obtained have been characterized by elemental and epoxy equivalent analyses and IR and NMR spectra. All these resins are found to have adequate viscosity and cure easily with amine curatives at elevated temperatures. Relevant properties for their use as binders in propellant formulations, such as thermal stability, heat of combustion, density, temperature dependence of viscosity, and mechanical strength of the composites, have been evaluated. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, 6061 Al metallic matrix was reinforced by 12.2 wt% df SiC particulates using liquid metallurgy route. The composite material thus obtained was extruded and characterized in the as-solutionized and peak aged conditions in order to delineate the effect of aging associated precipitation of secondary phases on the tensile fracture behavior of the composite samples. The results' of microstructural characterization studies carried out using scanning electron microscope revealed the increased presence of precipitated secondary phases in the metallic matrix and a more pronounced interfacial segregation of alloying elements in case of peak aged samples when compared to the as-solutionized samples. The results of the fractographic studies conducted on the as-solutionized samples revealed that the failure was dominated by the SiC particulates cracking while for the peak aged samples the fracture surface revealed a comparatively more pronounced SiC/6061 Al debonding and reduced SiC particulates cracking. This change in the failure behavior was rationalized in terms of embrittlement of the interfacial region brought about by the aging heat treatment and is correlated, in addition, with the mechanical properties of the composite samples in as-solutionized and peak aged conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design, analysis and technology for the integrity enhancement of damaged or underdesigned structures continues to be an engineering challenge. Bonded composite patch repairs to metallic structures is receiving increased attention in the recent years. It offers various advantages over rivetted doubler, particularly for airframe repairs. This paper presents an experimental investigation of residual strength and fatigue crack-growth life of an edge-cracked aluminium specimen repaired using glass epoxy composite patch. The investigation begins with the evaluation of three different surface treatments from bond strength viewpoint. A simple thumb rule formula is employed to estimate the patch size. Cracked and repaired specimens are tested under static and fatigue loading. The patch appears to restore the original strength of the undamaged specimen and enhance the fatigue crack growth life by an order of magnitude. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an exploratory study to illustrate the feasibility of detecting delamination type of damage in polymeric laminates with one layer of magnetostrictive particles. One such beam encircled with excitation and sensing coils is used for this study. The change in stress gradient of the magnetostrictive layer in the vicinity of delamination shows up as a change in induced voltage in the sensing coil, and therefore provides a means to sense the presence of delamination. Recognizing the constitutive behavior of the Terfenol-D material is highly nonlinear, analytical expressions for the constitutive relations are developed by using curve fitting techniques to the experimental data. Analytical expressions that relate the applied excitation field with the stress and magnetic flux densities induced in the magnetostrictive layer are developed. Numerical methods are used to find the relative change in the induced voltage in the sensing coil due to the presence of delamination. A typical example of unidirectional laminate, with embedded delaminations, is used for the simulation purposes. This exploratory study illustrates that the open-circuit voltage induced in the sensing coil changes significantly (as large of 68 millivolts) with the occurrence of delamination. This feature can be exploited for device off-line inspection techniques and/or linking monitoring procedures for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion conduction and thermal properties of composite solid polymer electrolyte (SPE) comprising Poly(ethylene) Glycol (PEG, mol wt. 2000), lithium perchlorate (LiClO4) and insulating Mn0.03Zn0.97Al2O4 nanoparticle fillers were studied by complex impedance analysis and DSC techniques. The average size of the nanoparticles was determined by powder X-ray diffraction (XRD) using Scherrer's equation and was found to be similar to 8 nm. The same was also determined by TEM imaging and found to be similar to 12 nm. The glass transition temperature T, as measured by differential scanning calorimeter (DSC), showed a minimum at 5 mol% of narroparticles. Fractional crystallinity was determined using DSC. NMR was used to deter-mine crystallinity of a pure PEG sample, which was then used as the standard. Fractional crystallinity X. was the lowest for 5 mol% and beyond. The ionic conductivity of the composite polymer electrolyte containing 5 mol% Mn0.03Zn0.97Al2O4 nanoparticles was found to be 1.82 x 10(-5) S/cm, while for the pristine one, it was 7.27 x 10(-7) S/cm at room temperature. As a function of nanoparticle content, conductivity was observed to go through two maxima, one at around 5 mol% and another shallower one at around 12 mol%. The temperature dependence of conductivity could be divided into two regions, one consistent with Arrhenius behaviour and the other with VTF. We conclude that the enhancement of ionic conductivity on the addition of Mn0.03Zn0.97Al2O4 nanoparticles is a result of reduction in both the T, and the crystallinity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, composite reinforcements in which combinations of materials and material forms such as strips, grids, and strips and anchors, depending on requirements have proven to be effective in various ground improvement applications. Composite geogrids studied in this paper belong to the category of composite reinforcements and are useful for bearing capacity improvement. The paper presents evaluation of results of bearing capacity tests conducted oil a composite geogrid, made of composite reinforcement consisting of steel and cement mortar. The study shows that the behavior of composite reinforcements follows the general trends observed in the case of conventional geogrids, with reference to the depth of first layer below the footing, number of layers of reinforcement, and vertical spacing of the reinforcement. Results show that the performance is comparable to that of a conventional polymer geogrid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient strategy for identification of delamination in composite beams and connected structures is presented. A spectral finite-element model consisting of a damaged spectral element is used for model-based prediction of the damaged structural response in the frequency domain. A genetic algorithm (GA) specially tailored for damage identification is derived and is integrated with finite-element code for automation. For best application of the GA, sensitivities of various objective functions with respect to delamination parameters are studied and important conclusions are presented. Model-based simulations of increasing complexity illustrate some of the attractive features of the strategy in terms of accuracy as well as computational cost. This shows the possibility of using such strategies for the development of smart structural health monitoring softwares and systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of strain rate (10(-4)-10(-2) s(-1)) on tensile and compressive strength of the Al-Si alloy and Al-Si/graphite composite are investigated. The strain hardening exponent value of the composite was more than that of the alloy for all strain rates during tensile and compressive loading. The yield stress of the composite was more than that of the ultimate tensile strength of the alloy for all strain rates. Tensile and compressive properties of the alloy and composite are dependent on strain rates. The negative strain rate sensitivity was observed for the composite and alloy at lower strain rates during the compression and tension loading respectively. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biphasic calcium phosphates have received considerable attention due to their optimum dissolution rate in the human body after implantation. These materials are composed of hydroxyapatite (HA) and resorbable tricalcium phosphate (TCP). In the present investigation, HA whiskers are reinforced into TCP to enhance the mechanical properties of this biphasic composite. Various amounts (30-50 wt%) HA whiskers are reinforced in TCP matrix. Microstructural characterization has been carried out using field-emission scanning electron microscope. Mechanical properties have been investigated by microindentation in a universal testing machine (UTM). As TCP is resorbable, it will dissolve in body fluid and there is a strong possibility for the faceted HA whiskers to interact with functional groups present in the body fluid surroundings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homogeneous composite thin films of Fe2O3-carbon nanotube were synthesized in a novel, single-step process by metalorganic chemical vapor deposition (MOCVD) using ferric acetyl acetonate as precursor. The deposition of composite takes place in a narrow range of CVD conditions, beyond which the deposition either multiwall carbon nanotubes (MWNTs) only or hematite (α-Fe2O3) only takes place. The composite film formed on stainless steel substrates were tested for their supercapacitive properties in various aqueous electrolytes.