970 resultados para Command
Resumo:
The feeding behavior of Aplysia californica can be classically conditioned using tactile stimulation of the lips as a conditioned stimulus (CS) and food as an unconditioned stimulus (US). Moreover, several neural correlates of classical conditioning have been identified. The present study extended previous work by developing an in vitro analog of classical conditioning and by investigating pairing-specific changes in neuronal and synaptic properties. The preparation consisted of the isolated cerebral and buccal ganglia. Electrical stimulation of a lip nerve (AT4) and a branch of the esophageal nerve (En2) served as the CS and US, respectively. Three protocols were used: paired, unpaired, and US alone. Only the paired protocol produced a significant increase in CS-evoked fictive feeding. At the cellular level, classical conditioning enhanced the magnitude of the CS-evoked synaptic input to pattern-initiating neuron B31/32. In addition, paired training enhanced both the magnitude of the CS-evoked synaptic input and the CS-evoked spike activity in command-like neuron CBI-2. The in vitro analog of classical conditioning reproduced all of the cellular changes that previously were identified following behavioral conditioning and has led to the identification of several new learning-related neural changes. In addition, the pairing-specific enhancement of the CS response in CBI-2 indicates that some aspects of associative plasticity may occur at the level of the cerebral sensory neurons.
Resumo:
Graphical presentation of regression results has become increasingly popular in the scientific literature, as graphs are much easier to read than tables in many cases. In Stata such plots can be produced by the -marginsplot- command. However, while -marginsplot- is very versatile and flexible, it has two major limitations: it can only process results left behind by -margins- and it can only handle one set of results at the time. In this article I introduce a new command called -coefplot- that overcomes these limitations. It plots results from any estimation command and combines results from several models into a single graph. The default behavior of -coefplot- is to plot markers for coefficients and horizontal spikes for confidence intervals. However, -coefplot- can also produce various other types of graphs. The capabilities of -coefplot- are illustrated in this article using a series of examples.
Resumo:
Digital technologies have profoundly changed not only the ways we create, distribute, access, use and re-use information but also many of the governance structures we had in place. Overall, "older" institutions at all governance levels have grappled and often failed to master the multi-faceted and multi-directional issues of the Internet. Regulatory entrepreneurs have yet to discover and fully mobilize the potential of digital technologies as an influential factor impacting upon the regulability of the environment and as a potential regulatory tool in themselves. At the same time, we have seen a deterioration of some public spaces and lower prioritization of public objectives, when strong private commercial interests are at play, such as most tellingly in the field of copyright. Less tangibly, private ordering has taken hold and captured through contracts spaces, previously regulated by public law. Code embedded in technology often replaces law. Non-state action has in general proliferated and put serious pressure upon conventional state-centered, command-and-control models. Under the conditions of this "messy" governance, the provision of key public goods, such as freedom of information, has been made difficult or is indeed jeopardized.The grand question is how can we navigate this complex multi-actor, multi-issue space and secure the attainment of fundamental public interest objectives. This is also the question that Ian Brown and Chris Marsden seek to answer with their book, Regulating Code, as recently published under the "Information Revolution and Global Politics" series of MIT Press. This book review critically assesses the bold effort by Brown and Marsden.
Resumo:
Car interaction and the organisation of multi-activity in cars have become a fertile topic of research within CA and EM (Laurier 2005, Haddington & Keisanen 2009). While previous research has focused exclusively on everyday car rides, in this paper we will analyse a specific kind of car interaction, namely driving lessons. In addition to"driving" and"talking", as the two main parallel activities in everyday car rides (Mondada in press), in driving lessons a central activity is"instructing", that we understand to be a collaborative accomplishment (Sanchez Svensson et al. 2009). Drawing on a corpus of 7 video-recorded driving lessons, we will analyse the sequential organisation of"instruction sequences", i.e. of those actions that are initiated by the driving instructor with a turn projecting the next relevant action to be executed by the learner. Learners carry out next actions in two different ways: a) as"single" actions (e.g. using the indicator); b) as a complex series of overlapping or parallel actions. We will show that"single" actions occur as responses to instructions concerning the learner's command of the car, while complex actions occur when the instructors formulate direction indications. The aims of our analyses are twofold. Firstly, we will analyse how instruction sequences are fitted to the emerging contingencies of the car ride (movement in space, changing environment): we will show that a) the turn format of the instruction initiation displays the degree of"urgency" of the requested action; b) learners have the possibility to start the relevant"next" before the instruction initiation comes to completion. Secondly, we will focus on those"seconds" that the driving instructor treats as problematic by initiating a repair sequence (e.g. an improper use of the indicator). Our research contributes to the discussion about the multimodal resources that participants can employ to fulfil a projected action. In addition, it offers insights in a hitherto scarcely investigated topic, namely the organisation of instructions and the ecology of apprenticeship. References HADDINGTON, P. & KEISANEN, T. (2009) Location, mobility and the body as resources in selecting a route. Journal of Pragmatics 41 (10), 1938-1961. LAURIER, Eric (2005): Searching for a parking space. Intellectica 41-42/2-3: 101-116. MONDADA, Lorenza (in press). Talking and driving: multi-activity in the car. Semiotica. SANCHEZ SVENSSON, M. et al. (2009) "Embedding instruction in practice: contingency and collaboration during surgical training", Sociology of Health & Illness, 31/6: 889-906.
Resumo:
Graphical display of regression results has become increasingly popular in presentations and in scientific literature because graphs are often much easier to read than tables. Such plots can be produced in Stata by the marginsplot command (see [R] marginsplot). However, while marginsplot is versatile and flexible, it has two major limitations: it can only process results left behind by margins (see [R] margins), and it can handle only one set of results at a time. In this article, I introduce a new command called coefplot that overcomes these limitations. It plots results from any estimation command and combines results from several models into one graph. The default behavior of coefplot is to plot markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce other types of graphs. I illustrate the capabilities of coefplot by using a series of examples.
Resumo:
addplot adds twoway plot objects to an existing twoway graph. This is useful if you want to add additional objects such as titles or extra data points to a twoway graph after it has been created. Most of what addplot can do, can also be done by rerunning the original graph command including additional options or plot statements. addplot, however, might be useful if you have to modify a graph for which you cannot rerun the original command, for example, because you only have the graph file but not the data that were used to create the graph. Furthermore, addplot can do certain things that would be difficult to achieve in a single graph command (e.g. customizing individual subgraphs within a by-graph). addplot also provides a substitute for some of the functionality of the graph editor.
Resumo:
The counterfactual decomposition technique popularized by Blinder (1973, Journal of Human Resources, 436–455) and Oaxaca (1973, International Economic Review, 693–709) is widely used to study mean outcome differences between groups. For example, the technique is often used to analyze wage gaps by sex or race. This article summarizes the technique and addresses several complications, such as the identification of effects of categorical predictors in the detailed decomposition or the estimation of standard errors. A new command called oaxaca is introduced, and examples illustrating its usage are given.
Resumo:
I introduce the new mgof command to compute distributional tests for discrete (categorical, multinomial) variables. The command supports largesample tests for complex survey designs and exact tests for small samples as well as classic large-sample x2-approximation tests based on Pearson’s X2, the likelihood ratio, or any other statistic from the power-divergence family (Cressie and Read, 1984, Journal of the Royal Statistical Society, Series B (Methodological) 46: 440–464). The complex survey correction is based on the approach by Rao and Scott (1981, Journal of the American Statistical Association 76: 221–230) and parallels the survey design correction used for independence tests in svy: tabulate. mgof computes the exact tests by using Monte Carlo methods or exhaustive enumeration. mgof also provides an exact one-sample Kolmogorov–Smirnov test for discrete data.
Resumo:
Organizing and archiving statistical results and processing a subset of those results for publication are important and often underestimated issues in conducting statistical analyses. Because automation of these tasks is often poor, processing results produced by statistical packages is quite laborious and vulnerable to error. I will therefore present a new package called estout that facilitates and automates some of these tasks. This new command can be used to produce regression tables for use with spreadsheets, LaTeX, HTML, or word processors. For example, the results for multiple models can be organized in spreadsheets and can thus be archived in an orderly manner. Alternatively, the results can be directly saved as a publication-ready table for inclusion in, for example, a LaTeX document. estout is implemented as a wrapper for estimates table but has many additional features, such as support for mfx. However, despite its flexibility, estout is—I believe—still very straightforward and easy to use. Furthermore, estout can be customized via so-called defaults files. A tool to make available supplementary statistics called estadd is also provided.
Resumo:
In Stata, graphs are usually generated by one call to the graph command. Sometimes, however, it would be convenient to be able to add objects to a graph after the graph has been created. In this article, I provide a command called addplot that offers such functionality for twoway graphs, capitalizing on an undocumented feature of Stata's graphics system.
Resumo:
At least since Thomas Piketty's best-selling "Capital in the Twenty-First Century" (2014, Cambridge, MA: The Belknap Press), percentile shares have become a popular approach for analyzing distributional inequalities. In their work on the development of top incomes, Piketty and collaborators typically report top-percentage shares, using varying percentages as thresholds (top 10%, top 1%, top 0.1%, etc.). However, analysis of percentile shares at other positions in the distribution may also be of interest. In this paper I present a new Stata command called pshare that estimates percentile shares from individual-level data and displays the results using histograms or stacked bar charts.
Resumo:
BACKGROUND Limitations in the primary studies constitute one important factor to be considered in the grading of recommendations assessment, development, and evaluation (GRADE) system of rating quality of evidence. However, in the network meta-analysis (NMA), such evaluation poses a special challenge because each network estimate receives different amounts of contributions from various studies via direct as well as indirect routes and because some biases have directions whose repercussion in the network can be complicated. FINDINGS In this report we use the NMA of maintenance pharmacotherapy of bipolar disorder (17 interventions, 33 studies) and demonstrate how to quantitatively evaluate the impact of study limitations using netweight, a STATA command for NMA. For each network estimate, the percentage of contributions from direct comparisons at high, moderate or low risk of bias were quantified, respectively. This method has proven flexible enough to accommodate complex biases with direction, such as the one due to the enrichment design seen in some trials of bipolar maintenance pharmacotherapy. CONCLUSIONS Using netweight, therefore, we can evaluate in a transparent and quantitative manner how study limitations of individual studies in the NMA impact on the quality of evidence of each network estimate, even when such limitations have clear directions.
Resumo:
INTRODUCTION The neural correlates of impaired performance of gestures are currently unclear. Lesion studies showed variable involvement of the ventro-dorsal stream particularly left inferior frontal gyrus (IFG) in gesture performance on command. However, findings cannot be easily generalized as lesions may be biased by the architecture of vascular supply and involve brain areas beyond the critical region. The neuropsychiatric syndrome of schizophrenia shares apraxic-like errors and altered brain structure without macroanatomic lesions. Schizophrenia may therefore qualify as a model disorder to test neural correlates of gesture impairments. METHODS We included 45 schizophrenia patients and 44 healthy controls in the study to investigate the structural brain correlates of defective gesturing in schizophrenia using voxel based morphometry. Gestures were tested in two domains: meaningful gestures (transitive and intransitive) on verbal command and imitation of meaningless gestures. Cut-off scores were used to separate patients with deficits, patients without deficits and controls. Group differences in gray matter (GM) volume were explored in an ANCOVA. RESULTS Patients performed poorer than controls in each gesture category (p < .001). Patients with deficits in producing meaningful gestures on command had reduced GM predominantly in left IFG, with additional involvement of right insula and anterior cingulate cortex. Patients with deficits differed from patients without deficits in right insula, inferior parietal lobe (IPL) and superior temporal gyrus. CONCLUSIONS Impaired performance of meaningful gestures on command was linked to volume loss predominantly in the praxis network in schizophrenia. Thus, the behavioral similarities between apraxia and schizophrenia are paralleled by structural alterations. However, few associations between behavioral impairment and structural brain alterations appear specific to schizophrenia.
Resumo:
133 Briefe zwischen Max Horkheimer und Margot von Mendelssohn; 2 Briefe zwischen Margot von Mendelssohn und Western Defense Command and Fourth Army (San Francisco), 1942; 1 Briefe an die Wartime Civil Control (San Francisco) von Margot von Mendelssohn, 1.12.1942; 1 Brief von Max Horkheimer an die Wartime Civil Control (San Francisco), [1942]; 3 Briefe an das Police Department (West Los Angeles) von Max Horkheimer, 1942; 1 Brief von Margot von Mendelssohn an L. M. Newberry, 03.09.1942; 1 Brief an L. M. Newberry von Max Horkheimer, 31.08.1942; 1 Brief von Max Horkheimer an U. S. Attorney (Los Angeles), 16.06.1942; 1 Brief von der Hebrew Sheltering and Immigrant Aid Society (New York) an Max Horkheimer, 29.10.1941; 1 Brief an das Department of State (Washington D. C.) von F. Pollock, 30.07.1941; 1 Brief von Leo Löwenthal an das Department of State (Washington D. C.), 28.07.1941;
Resumo:
Based on asthma prevalence data collected from the 2000 BRFSS survey, approximately 14.7 million U.S. adults had current asthma, accounting for 7.2% of the total U.S. population. In Texas alone, state data extrapolated from the 1999-2003 Texas BRFSS suggested that approximately 1 million Texas adults were reporting current asthma and approximately 11% of the adult population has been diagnosed with the illness during their lifetime. From a public health perspective, the disease is manageable. Comprehensive state-specific asthma surveillance data are necessary to identify disparities in asthma prevalence and asthma-control characteristics among subpopulations and to develop targeted public health interventions. The purpose of this study was to determine the relative importance of various risk factors of asthma and to examine the impact of asthma on health-related quality of life among adult residents of Texas. ^ The study employed a cross-sectional study of respondents in Texas. The study extracted all the variables related to asthma along with their associated demographic, socioeconomic, and quality of life variables from the 2007 BRFSS data for 17,248 adult residents of Texas aged 18 and older. Chi-square test and logistic regression using SPSS were used in various data analyses on weighted data, adjusting for the complex sample design of the BRFSS data. All chi-square analyses were carried out using SPSS's CSTABULATE command. In addition, logistic regression models were fitted using SPSS's CSLOGISTIC command. ^ Risks factors significantly associated with reporting current asthma included BMI, race/ethnicity, gender, and income. Holding all other variables constant, obese adults were almost twice as likely to report current asthma as those adults who were normal weight (odds ratio [OR], 1.78; 95% confidence interval [CI], 1.25 to 2.53). Other non-Hispanic adults were significantly more likely to report current asthma than non-Hispanic Whites (OR, 2.43; 95% CI, 1.38 to 4.25), while Hispanics were significantly less likely to report current asthma than non-Hispanic Whites (OR, 0.38; 95% CI, 0.25 to 0.60), after controlling for all other variables. After adjusting for all other variables, adult females were almost twice as likely to report current asthma as males (OR, 1.97; 95% CI, 1.49 to 2.60). Adults with household income of less than $15,000 were almost twice as likely to report current asthma as those persons with an annual household income of $50,000 or more (OR, 1.98; 95% CI, 1.33 to 2.94). In regards to the association between asthma and health-related quality of life, after adjusting for age, race/ethnicity, gender, tobacco use, body mass index (BMI), exercise, education, and income, adults with current asthma compared to those without asthma were more likely to report having more than 15 days of unhealthy physical health (OR, 1.84; 95% CI, 1.29 to 2.60). ^ Overall, the findings of this study provide insight and valuable information into the populations in Texas most adversely affected by asthma and health-related consequences of the disease condition. Further research could build on the findings of this study by replicating this study as closely as possible in other asthma settings, and look at the relationship for hospitalization rates, asthma severity, and mortality.^