986 resultados para Colony-Forming Units Assay
Resumo:
Background: Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli ( Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.Results: Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside ( IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.Conclusion: The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.
Resumo:
Studies of DNA damage in gastric epithelial cells of Helicobacter pylori (H. pylori)-infected patients are conflicting, possibly due to different methods used for scoring DNA damage by Comet assay. Therefore, we compared the sensitivity of visual microscopic analysis (arbitrary units-scores and comets%) and image analysis system (tail moment), in the gastric epithelial cells from the antrum and corpus of 122 H. pylori-infected and 32 non-infected patients. The feasibility of cryopreserved peripheral blood lymphocytes and whole-blood cells for DNA damage biomonitoring was also investigated. In the antrum, the levels of DNA damage were significantly higher in H. pylori-infected patients with gastritis than in non-infected patients with normal mucosa, when evaluated by image analysis system, arbitrary units and comets%. In the corpus, the comets% was not sufficiently sensitive to detect the difference between H. pylori-infected patients with gastritis and non-infected patients with normal mucosa. The image analysis system was sensitive enough to detect differences between non-infected patients and H. pylori-infected patients with mild gastritis and between infected patients with moderate and severe gastritis, in both antrum, and corpus, while arbitrary units and comets% were unable to detect these differences. In cryopreserved peripheral blood lymphocytes, the levels of DNA damage (tail moment) were significantly higher in H. pylori-infected patients with moderate and severe gastritis than in non-infected patients. Overall, our results indicate that the image analysis system is more sensitive and adequate to measure the levels of DNA damage in gastric epithelial cells than the other methods assayed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
The interference of some specific aqueous two-phase system (ATPS) phase-forming components in bovine serum albumin (BSA) determination by the Bradford method was investigated. For this purpose, calibration curves were obtained for BSA in the presence of different concentrations of salts and polymers. A total of 19 salts [Na2SO4, (NH4)(2)SO4, MgSO4, LiSO4, Na2HPO4, sodium phosphate buffer (pH 7.0), NaH2PO4, K2HPO4, potassium phosphate buffer (pH 7.0), KH2PO4, C6H8O7, Na3C6HSO7, KCHO2, NaCHO2, NaCO3, NaHCO3, C2H4O2, sodium acetate buffer (pH 4.5), and NaC2H3O2] and 7 polymers [PEG 4000, PEG 8000, PEG 20000, UCON 3900, Ficoll 70000, PES 100000, and PVP 40000] were tested, and each calibration curve was compared with the one obtained for BSA in water. Some concentrations of salts and polymers had considerable effect in the BSA calibration curve. Carbonate salts were responsible for the highest salt interference, whereas citric and acetic acids did not produce interference even in the maximum concentration level tested (5 wt%). Among the polymers, UCON gave the highest interference, whereas Ficoll did not produce interference when used in concentrations up to 10 wt%. It was concluded that a convenient dilution of the samples prior to the protein quantification is needed to ensure no significant interference from ATPS phase-forming constituents. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The emissive properties of terpolymers with fluorene, thiophene and phenylene groups, forming alternating PPV type structures, are discussed in terms of their composition, photo- and electroluminescence properties. The fluorene groups were inserted in each phenylene-vinylene and thiophene-vinylene units, and their concentration did not vary, representing 50% of the molar composition. The ratio of thiophene-vinylene/phenylene-vinylene varied in the range 25,50 and 75%. Photo- and electroluminescence properties were strongly dependent on the thiophene-vinylene content and were compared with the fluorene-vinylene-thiophene and fluorene-vinylene-phenylene parent copolymers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.
Resumo:
BACKGROUND Conventional chemotherapy in malignant pleural mesothelioma (MPM) has minimal impact on patient survival due to the supposed chemoresistance of cancer stem cells (CSCs). We sought to identify a sub-population of chemoresistant cells by using putative CSC markers, aldehyde dehydrogenase (ALDH) and CD44 in three MPM cell lines; H28, H2052 and Meso4. METHODS The Aldefluor assay was used to measure ALDH activity and sort ALDH(high) and ALDH(low) cells. Drug-resistance was evaluated by cell viability, anchorage-independent sphere formation, flow-cytometry and qRT-PCR analyses. RESULTS The ALDH(high) - and ALDH(low) -sorted fractions were able to demonstrate phenotypic heterogeneity and generate spheres, the latter being less efficient, and both showed an association with CD44. Cis- diamminedichloroplatinum (II) (cisplatin) treatment failed to reduce ALDH activity and conferred only a short-term inhibition of sphere generation in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. Induction of drug sensitivity by an ALDH inhibitor, diethylaminobenzaldehyde (DEAB) resulted in significant reductions in cell viability but not a complete elimination of the sphere-forming cells, suggestive of the presence of a drug-resistant subpopulation. At the transcript level, the cisplatin + DEAB-resistant cells showed upregulated mRNA expression levels for ALDH1A2, ALDH1A3 isozymes and CD44 indicating the involvement of these markers in conferring chemoresistance in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. CONCLUSIONS Our study shows that ALDH(high) CD44(+) cells are implicated in conveying tolerance to cisplatin in the three MPM cell lines. The combined use of CD44 and ALDH widens the window for identification and targeting of a drug-resistant population which may improve the current treatment modalities in mesothelioma.
Resumo:
We studied the coastal zone of the Tavoliere di Puglia plain, (Puglia region, southern Italy) with the aim to recognize the main unconformities, and therefore, the unconformity-bounded stratigraphic units (UBSUs; Salvador 1987, 1994) forming its Quaternary sedimentary fill. Recognizing unconformities is particularly problematic in an alluvial plain, due to the difficulties in distinguishing the unconformities that bound the UBSUs. So far, the recognition of UBSUs in buried successions has been made mostly by using seismic profiles. Instead, in our case, the unavailability of the latter has prompted us to address the problem by developing a methodological protocol consisting of the following steps: I) geological survey in the field; II) draft of a preliminary geological setting based on the field-survey results; III) dating of 102 samples coming from a large number of boreholes and some outcropping sections by means of the amino acid racemization (AAR) method applied to ostracod shells and 14C dating, filtering of the ages and the selection of valid ages; IV) correction of the preliminary geological setting in the light of the numerical ages; definition of the final geological setting with UBSUs; identification of a ‘‘hypothetical’’ or ‘‘attributed time range’’ (HTR or ATR) for each UBSU, the former very wide and subject to a subsequent modification, the latter definitive; V) cross-checking between the numerical ages and/or other characteristics of the sedimentary bodies and/or the sea-level curves (with their effects on the sedimentary processes) in order to restrict also the hypothetical time ranges in the attributed time ranges. The successful application of AAR geochronology to ostracod shells relies on the fact that the ability of ostracods to colonize almost all environments constitutes a tool for correlation, and also allow the inclusion in the same unit of coeval sediments that differ lithologically and paleoenvironmentally. The treatment of the numerical ages obtained using the AAR method required special attention. The first filtering step was made by the laboratory (rejection criteria a and b). Then, the second filtering step was made by testing in the field the remaining ages. Among these, in fact, we never compared an age with a single preceding and/or following age; instead, we identified homogeneous groups of numerical ages consistent with their reciprocal stratigraphic position. This operation led to the rejection of further numerical ages that deviate erratically from a larger, homogeneous age population which fits well with its stratigraphic position (rejection criterion c). After all of the filtering steps, the valid ages that remained were used for the subdivision of the sedimentary sequences into UBSUs together with the lithological and paleoenvironmental criteria. The numerical ages allowed us, in the first instance, to recognize all of the age gaps between two consecutive samples. Next, we identified the level, in the sedimentary thickness that is between these two samples, that may represent the most suitable UBSU boundary based on its lithology and/or the paleoenvironment. The recognized units are: I) Coppa Nevigata sands (NEA), HTR: MIS 20–14, ATR: MIS 17–16; II) Argille subappennine (ASP), HTR: MIS 15–11, ATR: MIS 15–13; III) Coppa Nevigata synthem (NVI), HTR: MIS 13–8, ATR: MIS 12–11; IV) Sabbie di Torre Quarto (STQ), HTR: MIS 13–9.1, ATR: MIS 11; V) Amendola subsynthem (MLM1), HTR: MIS 12–10, ATR: MIS 11; VI) Undifferentiated continental unit (UCI), HTR: MIS 11–6.2, ATR: MIS 9.3–7.1; VII) Foggia synthem (TGF), ATR: MIS 6; VIII) Masseria Finamondo synthem (TPF), ATR: Upper Pleistocene; IX) Carapelle and Cervaro streams synthem (RPL), subdivided into: IXa) Incoronata subsynthem (RPL1), HTR: MIS 6–3; ATR: MIS 5–3; IXb) Marane La Pidocchiosa–Castello subsynthem (RPL3), ATR: Holocene; X) Masseria Inacquata synthem (NAQ), ATR: Holocene. The possibility of recognizing and dating Quaternary units in an alluvial plain to the scale of a marine isotope stage constitutes a clear step forward compared with similar studies regarding other alluvial-plain areas, where Quaternary units were dated almost exclusively using their stratigraphic position. As a result, they were generically associated with a geological sub-epoch. Instead, our method allowed a higher detail in the timing of the sedimentary processes: for example, MIS 11 and MIS 5.5 deposits have been recognized and characterized for the first time in the study area, highlighting their importance as phases of sedimentation.
Resumo:
The rugose colony variant of Vibrio cholerae O1, biotype El Tor, is shown to produce an exopolysaccharide, EPSETr, that confers chlorine resistance and biofilm-forming capacity. EPSETr production requires a chromosomal locus, vps, that contains sequences homologous to carbohydrate biosynthesis genes of other bacterial species. Mutations within this locus yield chlorine-sensitive, smooth colony variants that are biofilm deficient. The biofilm-forming properties of EPSETr may enable the survival of V. cholerae O1 within environmental aquatic habitats between outbreaks of human disease.
Resumo:
A class of tandemly repeated DNA sequences (TR-1) of 350-bp unit length was isolated from the knob DNA of chromosome 9 of Zea mays L. Comparative fluorescence in situ hybridization revealed that TR-1 elements are also present in cytologically detectable knobs on other maize chromosomes in different proportions relative to the previously described 180-bp repeats. At least one knob on chromosome 4 is composed predominantly of the TR-1 repeat. In addition, several small clusters of the TR-1 and 180-bp repeats have been found in different chromosomes, some not located in obvious knob heterochromatin. Variation in restriction fragment fingerprints and copy number of the TR-1 elements was found among maize lines and among maize chromosomes. TR-1 tandem arrays up to 70 kilobases in length can be interspersed with stretches of 180-bp tandem repeat arrays. DNA sequence analysis and restriction mapping of one particular stretch of tandemly arranged TR-1 units indicate that these elements may be organized in the form of fold-back DNA segments. The TR-1 repeat shares two short segments of homology with the 180-bp repeat. The longest of these segments (31 bp; 64% identity) corresponds to the conserved region among 180-bp repeats. The polymorphism and complex structure of knob DNA suggest that, similar to the fold-back DNA-containing giant transposons in Drosophila, maize knob DNA may have some properties of transposable elements.
Resumo:
Structural information on complex biological RNA molecules can be exploited to design tectoRNAs or artificial modular RNA units that can self-assemble through tertiary interactions thereby forming nanoscale RNA objects. The selective interactions of hairpin tetraloops with their receptors can be used to mediate tectoRNA assembly. Here we report on the modulation of the specificity and the strength of tectoRNA assembly (in the nanomolar to micromolar range) by variation of the length of the RNA subunits, the nature of their interacting motifs and the degree of flexibility of linker regions incorporated into the molecules. The association is also dependent on the concentration of magnesium. Monitoring of tectoRNA assembly by lead(II) cleavage protection indicates that some degree of structural flexibility is required for optimal binding. With tectoRNAs one can compare the binding affinities of different tertiary motifs and quantify the strength of individual interactions. Furthermore, in analogy to the synthons used in organic chemistry to synthesize more complex organic compounds, tectoRNAs form the basic assembly units for constructing complex RNA structures on the nanometer scale. Thus, tectoRNA provides a means for constructing molecular scaffoldings that organize functional modules in three-dimensional space for a wide range of applications.
Resumo:
We describe here a method, based on iterative colony filter screening, for the rapid isolation of binding specificities from a large synthetic repertoire of human antibody fragments in single-chain Fv configuration. Escherichia coli cells, expressing the library of antibody fragments, are grown on a porous master filter, in contact with a second filter coated with the antigen, onto which antibodies secreted by the bacteria are able to diffuse. Detection of antigen binding on the second filter allows the recovery of a number of E.coli cells, including those expressing the binding specificity of interest, which can be submitted to a second round of screening for the isolation of specific monoclonal antibodies. We tested the methodology using as antigen the ED-B domain of fibronectin, a marker of angiogenesis. From an antibody library of 7 × 108 clones, we recovered a number of specifically-binding antibodies of different aminoacid sequence. The antibody clone showing the strongest enzyme-linked immunosorbent assay signal (ME4C) was further characterised. Its epitope on the ED-B domain was mapped using the SPOT synthesis method, which uses a set of decapeptides spanning the antigen sequence synthesised and anchored on cellulose. ME4C binds to the ED-B domain with a dissociation constant Kd = 1 × 10–7 M and specifically stains tumour blood vessels, as shown by immunohistochemical analysis on tumour sections of human and murine origin.
Resumo:
The bcl-2 proto-oncogene is overexpressed in a variety of human cancers and plays an important role in programmed cell death. Recent reports implied that the 3′-untranslated region (3′UTR) functions effectively in the regulation of gene expression. Here, we attempt to assay the ability of triplex forming oligonucleotides (TFOs) to inhibit expression of a target gene in vivo and to examine the potential of the 3′UTR of the bcl-2 proto-oncogene in the regulation of bcl-2 gene expression. To do this, we have developed a novel cellular system that involves transfection of a Doxycyclin inducible expression plasmid containing the bcl-2 ORF and the 3′UTR together with a TFO targeted to the 3′UTR of the bcl-2 proto-oncogene. Phosphorothioate-modified TFO targeted to the 3′UTR of the bcl-2 gene significantly downregulated the expression of the bcl-2 gene in HeLa cells as demonstrated by western blotting. Our results indicate that blocking the functions of the 3′UTR using the TFO can downregulate the expression of the targeted gene, and suggest that triplex strategy is a promising approach for oligonucleotide-based gene therapy. In addition, triplex-based sequence targeting may provide a useful tool for studying the regulation of gene expression.