956 resultados para Coastal ecology.
Resumo:
Due to the impacts of natural processes and anthropogenic activities, different coastal wetlands are faced with variable patterns of heavy metal contamination. It is important to quantify the contributions of pollutant sources, in order to adopt appropriate protection measures for local ecosystems. The aim of this research was to compare the heavy metal contamination patterns of two contrasting coastal wetlands in eastern China. In addition, the contributions from various metal sources were identified and quantified, and influencing factors, such as the role of the plant Spartina alterniflora, were evaluated. Materials and methods Sediment samples were taken from two coastal wetlands (plain-type tidal flat at the Rudong (RD) wetland vs embayment-type tidal flat at Luoyuan Bay (LY)) to measure the content of Al, Fe, Co, Cr, Cu, Mn, Mo, Ni, Sr, Zn, Pb, Cd, and As. Inductively coupled plasma atomic emission spectrometry, flame atomic absorption spectrometry, and atomic fluorescence spectrometry methods were used for metal detection. Meanwhile, the enrichment factor and geoaccumulation index were applied to assess the pollution level. Principle component analysis and receptor modeling were used to quantify the sources of heavy metals. Results and discussion Marked differences in metal distribution patterns between the two systems were present. Metal contents in LY were higher than those in RD, except for Sr and Mo. The growth status of S. alterniflora influenced metal accumulations in RD, i.e., heavy metals were more easily adsorbed in the sediment in the following sequence: Cu > Cd > Zn > Cr > Al > Pb ≥ Ni ≥ Co > Fe > Sr ≥ Mn > As > Mo as a result of the presence and size of the vegetation. However, this phenomenon was not observed in LY. A higher potential ecological risk was associated with LY, compared with RD, except for Mo. Based on a receptor model output, sedimentary heavy metal contents at RD were jointly influenced by natural sedimentary processes and anthropogenic activities, whereas they were dominated by anthropogenic activities at LY. Conclusions A combination of geochemical analysis and modeling approaches was used to quantify the different types of natural and anthropogenic contributions to heavy metal contamination, which is useful for pollution assessments. The application of this approach reveals that natural and anthropogenic processes have different influences on the delivery and retention of metals at the two contrasting coastal wetlands. In addition, the presence and size of S. alterniflora can influence the level of metal contamination in sedimentary environments.
Resumo:
The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) < 7.74. Diazotrophic phylotypes commonly found in oligotrophic marine waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms.
Resumo:
Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.
Resumo:
Characterization of chlorophyll and sea surface temperature (SST) structural heterogeneity using their scaling properties can provide a useful tool to estimate the relative importance of key physical and biological drivers. Seasonal, annual, and also instantaneous spatial distributions of chlorophyll and SST, determined from satellite measurements, in seven different coastal and shelf-sea regions around the UK have been studied. It is shown that multifractals provide a very good approximation to the scaling properties of the data: in fact, the multifractal scaling function is well approximated by universal multifractal theory. The consequence is that all of the statistical information about data structure can be reduced to being described by two parameters. It is further shown that also bathymetry scales in the studied regions as multifractal. The SST and chlorophyll multifractal structures are then explained as an effect of bathymetry and turbulence.
Resumo:
We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1�) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.
Resumo:
The oceanic Indian Ocean zooplankton species and their distributions have been well described, but the zooplankton of coastal regions, particularly around the oceanic islands, has not been well researched, either taxonomically or experimentally. The environment of the Mascarene region in the southwestern Indian Ocean and zooplankton research that has been carried out there is detailed, along with gaps in our knowledge. Suggestions are given for future research, particularly on the zooplankton species adapted to live in the fluctuating environment of inshore waters, including studies on taxonomy and biodiversity, life cycles, dispersion and genetics. Problems of carrying out taxonomic research are highlighted.
Resumo:
Phosphonates are organic compounds that contain a C-P bond and are a poorly characterized component of the marine phosphorus cycle. They may represent a potential source of bioavailable phosphorus, particularly in oligotrophic conditions. This study has investigated the distribution of the phnA gene which encodes phosphonoacetate hydrolase, the enzyme that mineralizes phosphonoacetate. Using newly designed degenerate primers targeting the phnA gene we analysed the potential for phosphonoacetate utilization in DNA and cDNA libraries constructed from a phytoplankton bloom in the Western English Channel during July 2006. Total RNA was isolated and reverse transcribed and phosphonoacetate hydrolase (phnA) transcripts were PCR amplified from the cDNA with the degenerate primers, cloned and sequenced. Phylogenetic analysis demonstrated considerable diversity with 14 sequence types yielding five unique phnA protein groups. We also identified 28 phnA homologues in a 454-pyrosequencing metagenomic and metatranscriptomic study from a coastal marine mesocosm, indicating that > 3% of marine bacteria in this study contained phnA. phnA homologues were also present in a metagenomic fosmid library from this experiment. Finally, cultures of four isolates of potential coral pathogens belonging to the Vibrionaceae contained the phnA gene. In the laboratory, these isolates were able to grow with phosphonoacetate as sole P and C source. The fact that the capacity to utilize phosphonoacetate was evident in each of the three coastal environments suggests the potential for widespread utilization of this bioavailable P source.
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
This study assessed nearshore, marine ecosystem function around Trinidad and Tobago (TT). The coastline of TT is highly complex, bordered by the Atlantic Ocean, the Caribbean Sea, the Gulf of Paria and the Columbus Channel, and subject to local terrestrial runoff and regional riverine inputs (e.g. the Orinoco and Amazon rivers). Coastal organisms can assimilate energy from allochthonous and autochthonous Sources, We assessed whether stable isotopes delta C-13 and delta N-15 Could be used to provide a rapid assessment of trophic interactions in primary consumers around the islands. Filter-feeding (bivalves and barnacles) and grazing organisms (gastropods and chitons) were collected from 40 marine sites during the wet season. The flesh of organisms was analysed for delta C-13 and delta N-15. Results indicate significant variation in primary consumers (by feeding guild and sampling zone). This variation was linked to different energy Sources being assimilated by consumers. Results suggest that offshore production is fuelling intertidal foodwebs; for example, a depleted delta C-13 signature in grazers from the Gulf of Paria, Columbus Channel and the Caribbean and Atlantic coastline of 9 Tobago indicates that carbon with an offshore origin (e.g. phytoplankton and dissolved organic matter) is more important than benthic or littoral algae (luring the wet season. Results also confirm findings from other studies indicating that much of the coastline is subject to Cultural eutrophication. This Study revealed that ecosystem function is spatially variable around the coastline of TT, This has clear implications for marine resource management, as a single management approach is unlikely to be successful at a national level.
Resumo:
Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal
Resumo:
Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and ;delta C-13 and delta N-15 stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in delta N-15 (trophic position) were evident between all three species, with size-based and temporal shifts in delta N-15 apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models.
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
This work provides a contribution to a better understanding of the trophic ecology of important predators in the Northern Humboldt Current System, the jack mackerel (Trachurus murphyi), the chub mackerel (Scomber japonicus) and the jumbo squid (Dosidicus gigas) by the characterization of the highly variable feeding patterns of these species at different spatiotemporal scales. We provided new knowledge on the comparative trophic behaviour of these species, defined as opportunistic in previous investigations. For that purpose we applied a variety of statistical methods to an extensive dataset of 27,188 non-empty stomachs. We defined the spatial organization of the forage fauna of these predators and documented changes in prey composition according to predators’ size and spatiotemporal features of environment. Our results highligh the key role played by the dissolved oxygen. We also deciphered an important paradox on the jumbo squid diet: why do they hardly forage on the huge anchovy (Engraulis ringens) biomass distributed of coastal Peru? We showed that the shallow oxygen minimum zone present off coastal Peru could hamper the co-occurrence of jumbo squids and anchovies. In addition, we proposed a conceptual model on jumbo squid trophic ecology including the ontogenetic cycle, oxygen and prey availability. Moreover we showed that the trophic behaviour of jack mackerel and chub mackerel is adapted to forage on more accessible species such as for example the squat lobster Pleurocondes monodon and Zoea larvae. Besides, both predators present a trophic overlap. But jack mackerel was not as oracious as chub mackerel, contradictorily to what was observed by others authors. Fish diet presented a high spatiotemporal variability, and the shelf break appeared as a strong biogeographical frontier. Diet composition of our fish predators was not necessarily a consistent indicator of changes in prey biomass. El Niño events had a weak effect on the stomach fullness and diet composition of chub mackerel and jack mackerel. Moreover, decadal changes in diet diversity challenged the classic paradigm of positive correlation between species richness and temperature. Finally, the global patterns that we described in this work, illustrated the opportunistic foraging behaviour, life strategies and the high degree of plasticity of these species. Such behaviour allows adaptation to changes in the environment.