960 resultados para Cluster size distribution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The wide production of construction and demolition waste and its illegal deposition are serious current problems in Brazil. This research proposes to evaluate the feasibility of using aggregate from recycled construction and demolition waste (RCDW) in pavement applications. A laboratory program was conducted by geotechnical characterization, bearing capacity and repeated load triaxial tests. The results show that the composition and the compactive effort influence on the physical characteristics of the RCDW aggregate. The compaction process has promoted a partial crushing and breakage of RCDW particles, changing the grain-size distribution and increasing the percentage of cubic grains. This physical change contributes to a better densification of the RCDW aggregate and consequently an improvement in bearing capacity, resilient modulus and resistance to permanent deformation. The results have shown that the RCDW aggregate may be utilized as coarse base and sub-base layer for low-volume roads. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activated slag cement (ASC) shows significantly higher shrinkage than ordinary Portland cement agglomerates. Cracking generated by shrinkage is one of the most critical drawbacks for broader applications of this promising alternative binder. This article investigates the relationship between ASC hydration, unrestrained drying and autogenous shrinkage of mortar specimens. The chemical and microstructure evolution due to hydration were determined on pastes by thermogravimetric analysis, conduction calorimetry and mercury porosimetry. Samples were prepared with ground blast furnace slag (BFS) activated with sodium silicate (silica modulus of 1.7) with 2.5, 3.5 and 4.5% of Na2O, by slag mass. The amount of activator is the primary influence on drying and autogenous shrinkage, and early hydration makes a considerable contribution to the total result, which increases with the amount of silica. Drying shrinkage occurred in two stages, the first caused by extensive water loss when the samples were exposed to the environment, and the second was associated with the hydration process and less water loss. Due to the refinement of ASC porous system, autogenous shrinkage is responsible for a significant amount of the total shrinkage. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on physical laws of similarity, an analytic solution of the soil water potential form of the Richards equation was derived for water infiltration into a homogeneous sand. The derivation assumes a similarity between the soil water retention function and that of the soil water content profiles taken at fixed times. The new solution successfully described soil water content profiles experimentally measured for water infiltrating downward, upward, and horizontally into a homogeneous sand and agrees with that presented by Philip in 1957. The utility of this analysis is still to be verified, but it is expected to hold for soils that have a narrow pore-size distribution before wetting and that manifest a sharp increase of water content at the wetting front during infiltration. The effect of van Genuchten`s parameters alpha and n on the application of the solution to other porous media was investigated. The solution also improves and provides a more realistic description of the infiltration process than that pioneered by Green and Ampt in 1911.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of the Boltzmann transform function, lambda(theta), to solve the Richards equation when the diffusivity, D, is a function of only soil water content,., is now commonplace in the literature. Nevertheless, a new analytic solution of the Boltzmann transform lambda(h) as a function of matric potential for horizontal water infiltration into a sand was derived without invoking the concept or use of D(theta). The derivation assumes that a similarity exists between the soil water retention function and the Boltzmann transform lambda(theta). The solution successfully described soil water content profiles experimentally measured for different infiltration times into a homogeneous sand and agrees with those presented by Philip in 1955 and 1957. The applicability of this solution for all soils remains open, but it is anticipated to hold for soils whose air-filled pore-size distribution before wetting is sufficiently narrow to yield a sharp increase of water content at the wetting front during infiltration. It also improves and provides a versatile alternative to the well-known analysis pioneered by Green and Ampt in 1911.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose Among environmental factors governing innumerous processes that are active in estuarine environments, those of edaphic character have received special attention in recent studies. With the objectives of determining the spatial patterns of soil attributes and components across different mangrove forest landscapes and obtaining additional information on the cause-effect relationships between these variables and position within the estuary, we analyzed several soil attributes in 31 mangrove soil profiles from the state of So Paulo (Guaruja, Brazil). Materials and methods Soil samples were collected at low tide along two transects within the CrumahA(0) mangrove forest. Samples were analyzed to determine pH, Eh, salinity, and the percentages of sand, silt, clay, total organic carbon (TOC), and total S. Mineralogy of the clay fraction (< 2 mm) was also studied by X-ray diffraction analysis, and partitioning of solid-phase Fe was performed by sequential extraction. Results and discussion The results obtained indicate important differences in soil composition at different depths and landscape positions, causing variations in physicochemical parameters, clay mineralogy, TOC contents, and iron geochemistry. The results also indicate that physicochemical conditions may vary in terms of different local microtopographies. Soil salinity was determined by relative position in relation to flood tide and transition areas with highlands. The proportions of TOC and total S are conditioned by the sedimentation of organic matter derived from vegetation and by the prevailing redox conditions, which clearly favored intense sulfate reduction in the soils (similar to 80% of the total Fe is Fe-pyrite). Particle-size distribution is conditioned by erosive/deposition processes (present and past) and probably by the positioning of ancient and reworked sandy ridges. The existing physicochemical conditions appear to contribute to the synthesis (smectite) and transformation (kaolinite) of clay minerals. Conclusions The results demonstrate that the position of soils in the estuary greatly affects soil attributes. Differences occur even at small scales (meters), indicating that both edaphic (soil classification, soil mineralogy, and soil genesis) and environmental (contamination and carbon stock) studies should take such variability into account.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Development and Characterization of L-Alanyl-L-Glutamine Containing Pellets employing Extrusion-Spheronization Method and Drying Process in Fluidized Bad Equipment"". In this work, five formulations of L-alanyl-L-glutamine (glutamine dipeptide) containing pellets with different drug concentration were developed and evaluated: F1 (9.07%); F2 (17.70%); F3 (27.98%); F4 (37.74%) e F5 (47.53%). Pellets were prepared by extrusion-spheronization method and, further, dried in fluidized bad equipment. The following assays were carried out with the batches obtained: granulometry, friability, true density and morphologic analysis. Between the five formulations evaluated, pellets obtained from F3 present best yield (75.80%), most uniform particle size distribution (89.67% of pellets with size in the range of 0.80 to 1.18), most high true density (2.1634 g/ml) and best aspect (1.0795 +/- 0.0410). Due to these features, pellets obtained from F3 were considered adequate to further polymeric coating process in order to produce a multiparticulate system to prolong L-alanyl-L-glutamine release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aims of this work were preparation and physical-chemical characterization of a microparticulate release system for delivery of enoxaparin sodium (ENX), a low-molecular-weight heparin, as a potential vehicle for optimization of deep venous thrombosis therapy. Microparticles (MPs) containing ENX were prepared from polylactide-co-glycolic acid [PLGA; (50: 50)] by a double emulsification/solvent evaporation method. The preparation parameters, such as proportion ENX/PLGA, surfactant concentration, type, time, and speed of stirring, were evaluated. The encapsulation efficiency and yield process were determined and optimized, and the in vitro release profile was analysed at 35 days. The MPs showed a spherical shape with smooth and regular surfaces. The size distribution showed a unimodal profile with an average size of 2.0 +/- 0.9 mu m. The low encapsulation efficiency (< 30%), characteristic of hydrophilic macromolecules was improved, reaching 50.2% with a procedure yield of 71.3%. The in vitro profile of ENX release from the MPs was evaluated and showed pseudo-zero-order kinetics. This indicated that diffusion was the main drug release mechanism. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:1783-1792, 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents an investigation of the potential of spray and spouted bed technology for the production of dried extracts of Rosmarinus officinalis Linne, popularly known as rosemary. The extractive solution was characterized by loss on drying, extractable matter and total phenolic and flavonoid compounds (chemical markers). The product was characterized by determination of loss on drying, size distribution, morphology, flow properties and thermal degradation and thermal behavior. The spray and spouted bed dryer performance were assessed through estimation of thermal efficiency, product accumulation and product recovery. The parameters studied were the inlet temperature of the spouting gas (80 and 150 degrees C) and the feed mass flow rate of concentrated extract relative to the evaporation capacity of the dryer, W-s/W-max (15 to 75%). The atomizing air flow rate was maintained at 20 l/min with a pressure of 196.1 kPa. The spouting gas flow rate used in the drying runs was 40% higher than the gas flow under the condition of minimum spouting. The spray drying gas flow rate was fixed at 0.0118 kg/s. Under the conditions studied, performance in the spray and spouted bed drying of rosemary extract was poor, causing high degradation of the marker compounds (mainly the phenolic compounds). Thus, process improvements are required before use on an industrial scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hot melt granulation of a coarse pharmaceutical powder in a top spray spouted bed is described. The substrate was lactose-polyvinylpyrrolidone particles containing or not acetaminophen as a drug model. Polyethylene glycol (MW, 4000) used as binder was atomized onto the bed by a two-fluid spray nozzle. The granulation experiments followed a 2(3) factorial design with triplicates at the center point and were carried out by varying the spray nozzle vertical position, the atomizing air flow rate and the binder feed rate. Granules were evaluated by their pharmacotechnical properties like size distribution, bulk and tapped densities, Carr index, Hausner ratio and tableting characteristics. Analysis of variance showed that granule sizes were affected by the PEG feed rate and atomizing air pressure at the significance levels of 1.0 and 5.0%. respectively, but spray nozzle distance to the substrate bed was not significant. The spray conditions also affected granule flow and consolidation properties. measured by the Carr index and Hausner ratio. Measured densities, Carr indexes and Hausner ratios proved that granules flowability and consolidation properties are adequate for pharmaceutical processing and tableting. Tablets prepared with acetaminophen-containing granules showed good properties and adequate release profiles in in vitro dissolution tests. The results indicate the suitability of spouted beds for the hot melt granulation of pharmaceutical coarse powders. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the results of an experimental investigation into the fluidized-bed coating of cylindrical metal specimens using two types of thermoplastic powders, Rilsan(R) PA11, a nylon-11 powder produced by Elf Atochem, France and Cotene(TM) 4612, a linear low density polyethylene powder produced by J.R Courtenay (New Zealand). The effects of dipping time, preheat temperature and particle size distribution on coating thickness and surface finish were investigated. Consistent trends in coating thickness growth with dipping time were obtained for both nylon-11 and polyethylene powders with increases in coating thickness with preheat temperature. For the same preheat temperature, the lower melting point of polyethylene results in thicker coatings compared to those of nylon-11. There is a negligible change in the coating thickness for sieved powders compared to that for unsieved powders. A pre-heat temperatures of between 240 degrees C and 300 degrees C is necessary to achieve an acceptable surface finish with both nylon-11 and polyethylene powders. To minimize errors in achieving the desired coating thickness, dipping times shorter than 2 s are not recommended. The use of graphs of coating thickness versus dipping time in combination with the coating surface roughness plots presented in this paper enable the optimal choice of pre-heat temperature and dipping time to achieve acceptable surface finish. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Percolative fragmentation was confirmed to occur during gasification of three microporous coal chars. Indirect evidence obtained by the variation of electrical resistivity (ER) with conversion was supported by direct observation of numerous fragments during gasification. The resistivity increases slowly at low conversions and then sharply after a certain conversion value, which is a typical percolation phenomenon suggesting the occurrence of internal fragmentation at high conversion. Two percolation models are applied to interpret the experimental data and determine the percolation threshold. A percolation threshold of 0.02-0.07 was found, corresponding to a critical conversion of 92-96% for fragmentation. The electrical resistivity variation at high conversions is found to be very sensitive to diffusional effects during gasification. Partially burnt samples with a narrow initial particle size range were also observed microscopically, and found to yield a large number of small fragments even when the particles showed no disintegration and chemical control prevailed. It is proposed that this is due to the separation of isolated clusters from the particle surface. The particle size distribution of the fragments was essentially independent of the reaction conditions and the char type, and supported the prediction by percolation theory that the number fraction distribution varies linearly with mass in a log-log plot. The results imply that perimeter fragmentation would occur in practical combustion systems in which the reactions are strongly diffusion affected.