885 resultados para Clean energy technologies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2016 John Wiley & Sons Ltd. Funded by DEVIL project. Grant Number: NE/M021327/1 Global Carbon Project MaGNET programme EU FP7 SmartSoil project. Grant Number: 289694

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioenergy is now accepted as having the potential to provide the major part of the projected renewable energy provisions of the future as biofuels in the form of gas, liquid or solid fuels or electricity and heat. There are three main routes to providing these biofuels — thermal conversion, biological conversion and physical conversion — all of which employ a range of chemical reactor configurations and process designs. This paper focuses on fast pyrolysis from which the liquid, often referred to as bio-oil, can be used on-site or stored or transported to centralised and/or remote user facilities for utilisation for example as a fuel, or further processing to biofuels and/or chemicals. This offers the potential for system optimisation, much greater economies of scale and exploitation of the concepts of biorefineries. The technology of fast pyrolysis is described, particularly the reactors that have been developed to provide the necessary conditions to optimise performance. The primary liquid product is characterised, as well as the secondary products of electricity and/or heat, liquid fuels and a considerable number of chemicals. The main technical and non-technical barriers to the market deployment of the various technologies are identified and briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy storage technologies are crucial for efficient utilization of electricity. Supercapacitors and rechargeable batteries are of currently available energy storage systems. Transition metal oxides, hydroxides, and phosphates are the most intensely investigated electrode materials for supercapacitors and rechargeable batteries due to their high theoretical charge storage capacities resulted from reversible electrochemical reactions. Their insulating nature, however, causes sluggish electron transport kinetics within these electrode materials, hindering them from reaching the theoretical maximum. The conductivity of these transition metal based-electrode materials can be improved through three main approaches; nanostructuring, chemical substitution, and introducing carbon matrices. These approaches often lead to unique electrochemical properties when combined and balanced.

Ethanol-mediated solvothermal synthesis we developed is found to be highly effective for controlling size and morphology of transition metal-based electrode materials for both pseudocapacitors and batteries. The morphology and the degree of crystallinity of nickel hydroxide are systematically changed by adding various amounts glucose to the solvothermal synthesis. Nickel hydroxide produced in this manner exhibited increased pseudocapacitance, which is partially attributed to the increased surface area. Interestingly, this morphology effect on cobalt doped-nickel hydroxide is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance.

Moreover, a thin layer of densely packed nickel oxide flakes on carbon paper substrate was successfully prepared via the glucose-assisted solvothermal synthesis, resulting in the improved electrode conductivity. When reduced graphene oxide was used for conductive coating on as-prepared nickel oxide electrode, the electrode conductivity was only slightly improved. This finding reveals that the influence of reduced graphene oxide coating, increasing the electrode conductivity, is not that obvious when the electrode is already highly conductive to begin with.

We were able to successfully control the interlayer spacing and reduce the particle size of layered titanium hydrogeno phosphate material using our ethanol-mediated solvothermal reaction. In layered structure, interlayer spacing is the key parameter for fast ion diffusion kinetics. The nanosized layered structure prepared via our method, however, exhibited high sodium-ion storage capacity regardless of the interlayer spacing, implying that interlayer space may not be the primary factor for sodium-ion diffusion in nanostructured materials, where many interstitials are available for sodium-ion diffusion.

Our ethanol-mediated solvothermal reaction was also effective for synthesis of NaTi2(PO4)3 nanoparticles with uniform size and morphology, well connected by a carbon nanotube network. This composite electrode exhibited high capacity, which is comparable to that in aqueous electrolyte, probably due to the uniform morphology and size where the preferable surface for sodium-ion diffusion is always available in all individual particles.

Fundamental understandings of the relationship between electrode microstructures and electrochemical properties discussed in this dissertation will be important to design high performance energy storage system applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracting wave energy from seas has been proven to be very difficult although various technologies have been developed since 1970s. Among the proposed technologies, only few of them have been actually progressed to the advanced stages such as sea trials or pre-commercial sea trial and engineering. One critical question may be how we can design an efficient wave energy converter or how the efficiency of a wave energy converter can be improved using optimal and control technologies, because higher energy conversion efficiency for a wave energy converter is always pursued and it mainly decides the cost of the wave energy production. In this first part of the investigation, some conventional optimal and control technologies for improving wave energy conversion are examined in a form of more physical meanings, rather than the purely complex mathematical expressions, in which it is hoped to clarify some confusions in the development and the terminologies of the technologies and to help to understand the physics behind the optimal and control technologies. As a result of the understanding of the physics and the principles of the optima, a new latching technology is proposed, in which the latching duration is simply calculated from the wave period, rather than based on the future information/prediction, hence the technology could remove one of the technical barriers in implementing this control technology. From the examples given in the context, this new latching control technology can achieve a phase optimum in regular waves, and hence significantly improve wave energy conversion. Further development on this latching control technologies can be found in the second part of the investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation studies capacity investments in energy sources, with a focus on renewable technologies, such as solar and wind energy. We develop analytical models to provide insights for policymakers and use real data from the state of Texas to corroborate our findings.

We first take a strategic perspective and focus on electricity pricing policies. Specifically, we investigate the capacity investments of a utility firm in renewable and conventional energy sources under flat and peak pricing policies. We consider generation patterns and intermittency of solar and wind energy in relation to the electricity demand throughout a day. We find that flat pricing leads to a higher investment level for solar energy and it can still lead to more investments in wind energy if considerable amount of wind energy is generated throughout the day.

In the second essay, we complement the first one by focusing on the problem of matching supply with demand in every operating period (e.g., every five minutes) from the perspective of a utility firm. We study the interaction between renewable and conventional sources with different levels of operational flexibility, i.e., the possibility

of quickly ramping energy output up or down. We show that operational flexibility determines these interactions: renewable and inflexible sources (e.g., nuclear energy) are substitutes, whereas renewable and flexible sources (e.g., natural gas) are complements.

In the final essay, rather than the capacity investments of the utility firms, we focus on the capacity investments of households in rooftop solar panels. We investigate whether or not these investments may cause a utility death spiral effect, which is a vicious circle of increased solar adoption and higher electricity prices. We observe that the current rate-of-return regulation may lead to a death spiral for utility firms. We show that one way to reverse the spiral effect is to allow the utility firms to maximize their profits by determining electricity prices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Canada, increases in rural development has led to a growing need to effectively manage the resulting municipal and city sewage without the addition of significant cost- and energy- expending infrastructure. Storring Septic Service Limited is a family-owned, licensed wastewater treatment facility located in eastern Ontario. It makes use of a passive waste stabilization pond system to treat and dispose of waste and wastewater in an environmentally responsible manner. Storring Septic, like many other similar small-scale wastewater treatment facilities across Canada, has the potential to act as a sustainable eco-engineered facility that municipalities and service providers could utilize to manage and dispose of their wastewater. However, it is of concern that the substantial inclusion of third party material could be detrimental to the stability and robustness of the pond system. In order to augment the capacity of the current facility, and ensure it remains a self-sustaining system with the capacity to safely accept septage from other sewage haulers, it was hypothesized that pond effluent treatment could be further enhanced through the incorporation of one of three different technology solutions, which would allow the reduction of wastewater quality parameters below existing regulatory effluent discharge limits put in place by Ontario’s Ministry of the Environment and Climate Change (MOECC). Two of these solutions make use of biofilm technologies in order to enhance the removal of wastewater parameters of interest, and the third utilizes the natural water filtration capabilities of zebra mussels. Pilot-scale testing investigated the effects of each of these technologies on treatment performance under both cold and warm weather operation. This research aimed to understand the important mechanisms behind biological filtration methods in order to choose and optimize the best treatment strategy for full-scale testing and implementation. In doing so, a recommendation matrix was elaborated provided with the potential to be used as a universal operational strategy for wastewater treatment facilities located in environments of similar climate and ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) systems offer a way to generate electricity locally in an urban setting while avoiding the environmental impacts of more widely used energy sources such as oil, coal, nuclear and natural gas. This report attempts to measure the benefits of incorporating solar technologies into urban residential land uses and identifies challenges to their widespread use by comparing implementation among three distinct residential neighbourhoods common to Canadian cities. The City of Kingston, Ontario is used as the location for this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy-efficient computing remains a critical challenge across the wide range of future data-processing engines — from ultra-low-power embedded systems to servers, mainframes, and supercomputers. In addition, the advent of cloud and mobile computing as well as the explosion of IoT technologies have created new research challenges in the already complex, multidimensional space of modern and future computer systems. These new research challenges led to the establishment of the IEEE Rebooting Computing Initiative, which specifically addresses novel low-power solutions and technologies as one of the main areas of concern.With this in mind, we thought it timely to survey the state of the art of energy-efficient computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model for availability analysis of standalone hybrid microgrid. The microgrid used in the study consists of wind, solar storage and diesel generator. Boolean driven Markov process is used to develop the availability of the system in the proposed method. By modifying the developed model, the relationship between the availability of the system with the fine (normal) weather and disturbed (stormy) weather durations are analyzed. Effects of different converter technologies on the availability of standalone microgrid were investigated and the results have shown that the availability of microgrid increased by 5.80 % when a storage system is added. On the other hand, the availability of standalone microgrid could be overestimated by 3.56 % when weather factor is neglected. In the same way 200, 500 and 1000 hours of disturbed weather durations reduced the availability of the system by 5.36%, 9.73% and 13.05 %, respectively. In addition, the hybrid energy storage cascade topology with a capacitor in the middle maximized the system availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smartphones have undergone a remarkable evolution over the last few years, from simple calling devices to full fledged computing devices where multiple services and applications run concurrently. Unfortunately, battery capacity increases at much slower pace, resulting as a main bottleneck for Internet connected smartphones. Several software-based techniques have been proposed in the literature for improving the battery life. Most common techniques include data compression, packet aggregation or batch scheduling, offloading partial computations to cloud, switching OFF interfaces (e.g., WiFi or 3G/4G) periodically for short intervals etc. However, there has been no focus on eliminating the energy waste of background applications that extensively utilize smartphone resources such as CPU, memory, GPS, WiFi, 3G/4G data connection etc. In this paper, we propose an Application State Proxy (ASP) that suppresses/stops the applications on smartphones and maintains their presence on any other network device. The applications are resumed/restarted on smartphones only in case of any event, such as a new message arrival. In this paper, we present the key requirements for the ASP service and different possible architectural designs. In short, the ASP concept can significantly improve the battery life of smartphones, by reducing to maximum extent the usage of its resources due to background applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition to a “low carbon, climate resilient and environmentally sustainable economy by the end of the 
year 2050” has been conceptualised as the “national transition objective” in the Irish Climate Action and Low Carbon Development Bill, passed in late 2015. This has raised a myriad of questions over how this can be operationalised and resourced and whether it can maintain political momentum. This paper assesses the utility of framings informed by the transitions (MLP) and technological innovation systems perspectives in contributing to transformative societal processes, by examining their application in an Irish case study on policy and technology. Through a qualitative exploration of the broader societal and policy context of the energy sector and a more detailed examination of the innovation systems of selected niche technologies (bioenergy and electric vehicles), the Irish case study sought to identify potential catalysts for a sustainability transition in the energy sector in Ireland: where these exist, how these are being built or enabled, and barriers to change. Following a discussion on the theoretical approaches used, a description will be given of how these were applied in the conducting of the research on transition in Ireland case study and the key findings which emerged. A critical reflection will then be made on the utility of these perspectives (as applied) to contribute to broader processes of societal transformation in Ireland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.