885 resultados para Classification system
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment.
Resumo:
Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.
Resumo:
Semi-supervised learning is a classification paradigm in which just a few labeled instances are available for the training process. To overcome this small amount of initial label information, the information provided by the unlabeled instances is also considered. In this paper, we propose a nature-inspired semi-supervised learning technique based on attraction forces. Instances are represented as points in a k-dimensional space, and the movement of data points is modeled as a dynamical system. As the system runs, data items with the same label cooperate with each other, and data items with different labels compete among them to attract unlabeled points by applying a specific force function. In this way, all unlabeled data items can be classified when the system reaches its stable state. Stability analysis for the proposed dynamical system is performed and some heuristics are proposed for parameter setting. Simulation results show that the proposed technique achieves good classification results on artificial data sets and is comparable to well-known semi-supervised techniques using benchmark data sets.
Resumo:
The term Congenital Nystagmus (Early Onset Nystagmus or Infantile Nystagmus Syndrome) refers to a pathology characterised by an involuntary movement of the eyes, which often seriously reduces a subject’s vision. Congenital Nystagmus (CN) is a specific kind of nystagmus within the wider classification of infantile nystagmus, which can be best recognized and classified by means of a combination of clinical investigations and motility analysis; in some cases, eye movement recording and analysis are indispensable for diagnosis. However, interpretation of eye movement recordings still lacks of complete reliability; hence new analysis techniques and precise identification of concise parameters directly related to visual acuity are necessary to further support physicians’ decisions. To this aim, an index computed from eye movement recordings and related to the visual acuity of a subject is proposed in this thesis. This estimator is based on two parameters: the time spent by a subject effectively viewing a target (foveation time - Tf) and the standard deviation of eye position (SDp). Moreover, since previous studies have shown that visual acuity largely depends on SDp, a data collection pilot study was also conducted with the purpose of specifically identifying eventual slow rhythmic component in the eye position and to characterise in more detail the SDp. The results are presented in this thesis. In addition, some oculomotor system models are reviewed and a new approach to those models, i.e. the recovery of periodic orbits of the oculomotor system in patients with CN, is tested on real patients data. In conclusion, the results obtained within this research consent to completely and reliably characterise the slow rhythmic component sometimes present in eye position recordings of CN subjects and to better classify the different kinds of CN waveforms. Those findings can successfully support the clinicians in therapy planning and treatment outcome evaluation.
Resumo:
Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.
Resumo:
Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.
Resumo:
Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Resumo:
OBJECTIVE: To compare the content covered by twelve obesity-specific health status measures using the International Classification of Functioning, Disability and Health (ICF). DESIGN: Obesity-specific health status measures were identified and then linked to the ICF separately by two trained health professionals according to standardized guidelines. The degree of agreement between health professionals was calculated by means of the kappa (kappa) statistic. Bootstrapped confidence intervals (CI) were calculated. The obesity-specific health-status measures were compared on the component and category level of the ICF. MEASUREMENTS: welve condition-specific health-status measures were identified and included in this study, namely the obesity-related problem scale, the obesity eating problems scale, the obesity-related coping and obesity-related distress questionnaire, the impact of weight on quality of life questionnaire (short version), the health-related quality of life questionnaire, the obesity adjustment survey (short form), the short specific quality of life scale, the obesity-related well-being questionnaire, the bariatric analysis and reporting outcome system, the bariatric quality of life index, the obesity and weight loss quality of life questionnaire and the weight-related symptom measure. RESULTS: In the 280 items of the eight measures, a total of 413 concepts were identified and linked to the 87 different ICF categories. The measures varied strongly in the number of concepts contained and the number of ICF categories used to map these concepts. Items on body functions varied form 12% in the obesity-related problem scale to 95% in the weight-related symptom measure. The estimated kappa coefficients ranged between 0.79 (CI: 0.72, 0.86) at the component ICFs level and 0.97 (CI: 0.93, 1.0) at the third ICF's level. CONCLUSION: The ICF proved highly useful for the content comparison of obesity-specific health-status measures. The results may provide clinicians and researchers with new insights when selecting health-status measures for clinical studies in obesity.
Resumo:
OBJECTIVES: We sought to compare the diagnostic performance of screen-film radiography, storage-phosphor radiography, and a flat-panel detector system in detecting forearm fractures and to classify distal radius fractures according to the Müller-AO and Frykman classifications compared with the true extent, depicted by anatomic preparation. MATERIALS AND METHODS: A total of 71 cadaver arms were fractured in a material testing machine creating different fractures of the radius and ulna as well as of the carpal bones. Radiographs of the complete forearm were evaluated by 3 radiologists, and anatomic preparation was used as standard of reference in a receiver operating curve analysis. RESULTS: The highest diagnostic performance was obtained for the detection of distal radius fractures with area under the receiver operating curve (AUC) values of 0.959 for screen-film radiography, 0.966 for storage-phosphor radiography, and 0.971 for the flat-panel detector system (P > 0.05). Exact classification was slightly better for the Frykman (kappa values of 0.457-0.478) compared with the Müller-AO classification (kappa values of 0.404-0.447), but agreement can be considered as moderate for both classifications. CONCLUSIONS: The 3 imaging systems showed a comparable diagnostic performance in detecting forearm fractures. A high diagnostic performance was demonstrated for distal radius fractures and conventional radiography can be routinely performed for fracture detection. However, compared with anatomic preparation, depiction of the true extent of distal radius fractures was limited and the severity of distal radius fractures tends to be underestimated.
Resumo:
BACKGROUND: With the International Classification of Functioning, Disability and Health (ICF), we can now rely on a globally agreed-upon framework and system for classifying the typical spectrum of problems in the functioning of persons given the environmental context in which they live. ICF Core Sets are subgroups of ICF items selected to capture those aspects of functioning that are most likely to be affected by sleep disorders. OBJECTIVE: The objective of this paper is to outline the developmental process for the ICF Core Sets for Sleep. METHODS: The ICF Core Sets for Sleep will be defined at an ICF Core Sets Consensus Conference, which will integrate evidence from preliminary studies, namely (a) a systematic literature review regarding the outcomes used in clinical trials and observational studies, (b) focus groups with people in different regions of the world who have sleep disorders, (c) an expert survey with the involvement of international clinical experts, and (d) a cross-sectional study of people with sleep disorders in different regions of the world. CONCLUSION: The ICF Core Sets for Sleep are being designed with the goal of providing useful standards for research, clinical practice and teaching. It is hypothesized that the ICF Core Sets for Sleep will stimulate research that leads to an improved understanding of functioning, disability, and health in sleep medicine. It is of further hope that such research will lead to interventions and accommodations that improve the restoration and maintenance of functioning and minimize disability among people with sleep disorders throughout the world.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.
Resumo:
Long-term electrocardiography (ECG) featuring adequate atrial and ventricular signal quality is highly desirable. Routinely used surface leads are limited in atrial signal sensitivity and recording capability impeding complete ECG delineation, i.e. in the presence of supraventricular arrhythmias. Long-term esophageal ECG might overcome these limitations but requires a dedicated lead system and recorder design. To this end, we analysed multiple-lead esophageal ECGs with respect to signal quality by describing the ECG waves as a function of the insertion level, interelectrode distance, electrode shape and amplifier's input range. The results derived from clinical data show that two bipolar esophageal leads, an atrial lead with short (15 mm) interelectrode distance and a ventricular lead with long (80 mm) interelectrode distance provide non-inferior ventricular signal strength and superior atrial signal strength compared to standard surface lead II. High atrial signal slope in particular is observed with the atrial esophageal lead. The proposed esophageal lead system in combination with an increased recorder input range of ±20 mV minimizes signal loss due to excessive electrode motion typically observed in esophageal ECGs. The design proposal might help to standardize long-term esophageal ECG registrations and facilitate novel ECG classification systems based on the independent detection of ventricular and atrial electrical activity.
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.