931 resultados para Civil engineering|Engineering, Sanitary and Municipal|Petroleum engineering|Environmental science
Resumo:
Water resource depletion and sanitation are growing problems around the world. A solution to both of these problems is the use of composting latrines, as it requires no water and has been recommended by the World Health Organization as an improved sanitation technology. However, little analysis has been done on the decomposition process occurring inside the latrine, including what temperatures are reached and what variables most affect the composting process. Having better knowledge of how outside variables affect composting latrines can aid development workers on the choice of implementing such technology, and to better educate the users on the appropriate methods of maintenance. This report presents a full, detailed construction manual and temperature data analysis of a double vault composting latrine. During the author’s two year Peace Corps service in rural Paraguay he was involved with building twenty one composting latrines, and took detailed temperature readings and visual observations of his personal latrine for ten months. The author also took limited temperature readings of fourteen community member’s latrines over a three month period. These data points were analyzed to find correlations between compost temperatures and several variables. The two main variables found to affect the compost temperatures were the seasonal trends of the outside temperatures, and the mixing and addition of moisture to the compost. Outside seasonal temperature changes were compared to those of the compost and a linear regression was performed resulting in a R2-value of 0.89. Mixing the compost and adding water, or a water/urine mixture, resulted in temperature increases of the compost 100% of the time, with seasonal temperatures determining the rate and duration of the temperature increases. The temperature readings were also used to find events when certain temperatures were held for sufficient amounts of time to reach total pathogen destruction in the compost. Four different events were recorded when a temperature of 122°F (50°C) was held for at least 24 hours, ensuring total pathogen destruction in that area of the compost. One event of 114.8°F (46°C) held for one week was also recorded, again ensuring total pathogen destruction. Through the analysis of the temperature data, however, it was found that the compost only reached total pathogen destruction levels during ten percent of the data points. Because of this the storage time recommendation outlined by the World Health Organization should be complied with. The WHO recommends storing compost for 1.5-2 years in climates with ambient temperatures of 2-20°C (35-68°F), and for at least 1 year with ambient temperatures of 20-35°C (68-95°F). If these storage durations are obtainable the use of the double vault composting latrine is an economical and achievable solution to sanitation while conserving water resources.
Resumo:
Madagascar’s terrestrial and aquatic ecosystems have long supported a unique set of ecological communities, many of whom are endemic to the tropical island. Those same ecosystems have been a source of valuable natural resources to some of the poorest people in the world. Nevertheless, with pride, ingenuity and resourcefulness, the Malagasy people of the southwest coast, being of Vezo identity, subsist with low development fishing techniques aimed at an increasingly threatened host of aquatic seascapes. Mangroves, sea grass bed, and coral reefs of the region are under increased pressure from the general populace for both food provisions and support of economic opportunity. Besides purveyors and extractors, the coastal waters are also subject to a number of natural stressors, including cyclones and invasive, predator species of both flora and fauna. In addition, the aquatic ecosystems of the region are undergoing increased nutrient and sediment runoff due, in part, to Madagascar’s heavy reliance on land for agricultural purposes (Scales, 2011). Moreover, its coastal waters, like so many throughout the world, have been proven to be warming at an alarming rate over the past few decades. In recognizing the intimate interconnectedness of the both the social and ecological systems, conservation organizations have invoked a host of complimentary conservation and social development efforts with the dual aim of preserving or restoring the health of both the coastal ecosystems and the people of the region. This paper provides a way of thinking more holistically about the social-ecological system within a resiliency frame of understanding. Secondly, it applies a platform known as state-and-transition modeling to give form to the process. State-and-transition modeling is an iterative investigation into the physical makeup of a system of study as well as the boundaries and influences on that state, and has been used in restorative ecology for more than a decade. Lastly, that model is sited within an adaptive management scheme that provides a structured, cyclical, objective-oriented process for testing stakeholders cognitive understanding of the ecosystem through a pragmatic implementation and monitoring a host of small-scale interventions developed as part of the adaptive management process. Throughout, evidence of the application of the theories and frameworks are offered, with every effort made to retool conservation-minded development practitioners with a comprehensive strategy for addressing the increasingly fragile social-ecological systems of southwest Madagascar. It is offered, in conclusion, that the seascapes of the region would be an excellent case study worthy of future application of state-and-transition modeling and adaptive management as frameworks for conservation-minded development practitioners whose multiple projects, each with its own objective, have been implemented with a single goal in mind: preserve and protect the state of the supporting environment while providing for the basic needs of the local Malagasy people.
Resumo:
A shortage of petroleum asphalt is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oils, original bio oil (OB), dewatered bio oil (DWB) and polymer-modified bio oil (PMB) were used to modify and partially replace petroleum asphalt in this research. The research investigated the procedure of producing bio oil, the rheological properties of asphalt binders modified and partially replaced by bio oil, and the mechanical performances of asphalt mixtures modified by bio oil. The analysis of variance (ANOVA) is conducted on the test results for the significance analysis. The main finding of the study includes: 1) the virgin bioasphalt is softer than the traditional asphalt binder PG 58-28 but stiffer after RTFO aging because bio oil ages much faster than the traditional asphalt binder during mixing and compaction; 2) the binder test showed that the addition of bio oil is expected to improve the rutting performance while reduce the fatigue and low temperature performance; 3) both the mass loss and the oxidation are important reasons for the bio oil aging during RTFO test; the mixture test showed that 1) most of the bio oil modified asphalt mixture had slightly higher rutting depth than the control asphalt mixture, but the difference is not statistically significant; 2) the dynamic modulus of some of the bio oil modified asphalt mixture were slightly lower than the control asphalt mixture, the E* modulus is also not statistically significant; 3) most of the bio oil modified asphalt mixture had higher fatigue lives than the control asphalt mixture; 4) the inconsistence of binder test results and mixture test results may be attributed to that the aging during the mixing and compaction was not as high as that in the RTFO aging simulation. 5) the implementation of Michigan wood bioasphalt is anticipated to reduce the emission but bring irritation on eyes and skins during the mixing and compaction.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.
Resumo:
Comparing published NAVD 88 Helmert orthometric heights of First-Order bench marks against GPS-determined orthometric heights showed that GEOID03 and GEOID09 perform at their reported accuracy in Connecticut. GPS-determined orthometric heights were determined by subtracting geoid undulations from ellipsoid heights obtained from a network least-squares adjustment of GPS occupations in 2007 and 2008. A total of 73 markers were occupied in these stability classes: 25 class A, 11 class B, 12 class C, 2 class D bench marks, and 23 temporary marks with transferred elevations. Adjusted ellipsoid heights were compared against OPUS as a check. We found that: the GPS-determined orthometric heights of stability class A markers and the transfers are statistically lower than their published values but just barely; stability class B, C and D markers are also statistically lower in a manner consistent with subsidence or settling; GEOID09 does not exhibit a statistically significant residual trend across Connecticut; and GEOID09 out-performed GEOID03. A "correction surface" is not recommended in spite of the geoid models being statistically different than the NAVD 88 heights because the uncertainties involved dominate the discrepancies. Instead, it is recommended that the vertical control network be re-observed.
Resumo:
Over the past 20 years, the economic landscape has changed dramatically in Spain, undergoing a growth explosion and a subsequent decline which has led to the current economic crisis. This growth has led to heavy immigration from both developed and developing countries, which provided skilled and unskilled labour. This article aims to analyze the impact of immigrant students at the Polytechnic University of Madrid, pondering the effect that the economic crisis is having and will have on this group, and evaluating the implementation of new plans of Bologna. We analyze the enrolment at the UPM and particularize to the Civil Engineering school (previous EUITOP), crossing with the effect of the economic crisis on foreign students. The exponential increase of foreign students, most of them from Latin American and born in Spain, and students of European countries that have started to register considerably from 2002 and 2003, lead us to consider a renewal in certain areas of learning, and to exploit the possibility of interaction with other countries so successful through the acquisition of transversal skills, as well as to guide and improve, support and integrate these groups at our university Keywords: knowledge, learning, Bologna, academic record
Resumo:
The traditional teaching methods used for training civil engineers are currently being called into question as a result of the new knowledge and skills now required by the labor market. In addition, the European Higher Education Area is requesting that students be given a greater say in their learning. In the subject called Construction and Building Materials at the Civil Engineering School of the Universidad Politécnica de Madrid, a path was set three academic years ago to lead to an improvement in traditional teaching by introducing active methodologies. The innovations are based on cooperative learning, new technologies, and continuous assessment. The writers’ proposal is to offer their experience as a contribution to the debate on how students can be encouraged to acquire the skills currently demanded from a civil engineer, though not overlooking solid, top-quality training. From the outcomes obtained, it can be concluded that using new teaching techniques to supplement a traditional approach provides more opportunities for students to learn while boosting their motivation. In our case, the introduction of these changes has resulted in an increased pass rate of 29% on average, when such a figure is considered in the light of the mean value of passes during the last decade.
Resumo:
GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests.
Resumo:
Within both aesthetic and history fields, civil engineering occupies a privileged place among arts whose manifestations are based on drawing. In this work, Leonardo’s creativity concerned with civil bridges proyects, have been studied. Leonardo designed ten bridges: eight of them intended for military porposes and only two were purely planned for civil functionaly - “Ponte sul corno d’oro”, infolio 66, manuscript L; and “Ponte a due piani”, represented in the Manuscript B at the Institute of France, infolio 23. There can be no doubt about Leonardo’s intentions when he started on designing these two bridges: his genious for creativy focused on providing both singulary and functionaly to the structures: they should be admired and utilized at the same time, a monument for civil society to be used.The work presented here attemps to make an scientist-historical trip along these Leonardo’s bridges, highlighting their technical, geometrical and aesthetic characteristics, as well as emphasizing Leonardo’s human, scientist and artistic nature.
Resumo:
Civil engineering structures such as floor systems with open-plan layout or lightweight footbridges are susceptible to excessive level of vibrations caused by human loading. Active vibration control (AVC) via inertial mass actuators has been shown to be a viable technique to mitigate vibrations, allowing structures to satisfy vibration serviceability limits. Most of the AVC applications involve the use of SISO (single input single-output) strategies based on collocated control. However, in the case of floor structures, in which mostof the vibration modes are locally spatially distributed, SISO or multi-SISO strategies are quite inefficient. In this paper, a MIMO (multi-inputs multi-outputs) control in decentralised and centralised configuration is designed. The design process simultaneously finds the placement of multiple actuators and sensors and the output feedback gains. Additionally, actuator dynamics, actuator nonlinearities and frequency and time weightings are considered into the design process. Results with SISO and decentralised and centralised MIMO control (for a given number of actuators and sensors) are compared, showing the advantages of MIMO control for floor vibration control.
Resumo:
Area, launched in 1999 with the Bologna Declaration, has bestowed such a magnitude and unprecedented agility to the transformation process undertaken by European universities. However, the change has been more profound and drastic with regards to the use of new technologies both inside and outside the classroom. This article focuses on the study and analysis of the technology’s history within the university education and its impact on teachers, students and teaching methods. All the elements that have been significant and innovative throughout the history inside the teaching process have been analyzed, from the use of blackboard and chalk during lectures, the use of slide projectors and transparent slides, to the use of electronic whiteboards and Internet nowadays. The study is complemented with two types of surveys that have been performed among teachers and students during the school years 1999 - 2011 in the School of Civil Engineering at the Polytechnic University of Madrid. The pros and cons of each of the techniques and methodologies used in the learning process over the last decades are described, unfolding how they have affected the teacher, who has evolved from writing on a whiteboard to project onto a screen, the student, who has evolved from taking handwritten notes to download information or search the Internet, and the educational process, that has evolved from the lecture to acollaborative learning and project-based learning. It is unknown how the process of learning will evolve in the future, but we do know the consequences that some of the multimedia technologies are having on teachers, students and the learning process. It is our goal as teachers to keep ourselves up to date, in order to offer the student adequate technical content, while providing proper motivation through the use of new technologies. The study provides a forecast in the evolution of multimedia within the classroom and the renewal of the education process, which in our view, will set the basis for future learning process within the context of this new interactive era.
Resumo:
The multimedia development that has taken place within the university classrooms in recent years has caused a revolution at psychological level within the collectivity of students and teachers inside and outside the classrooms. The slide show applications have become a key supporting element for university professors, who, in many cases, rely blindly in the use of them for teaching. Additionally, ill-conceived slides, poorly structured and with a vast amount of multimedia content, can be the basis of a faulty communication between teacher and student, which is overwhelmed by the appearance and presentation, neglecting their content. The same applies to web pages. This paper focuses on the study and analysis of the impact caused in the process of teaching and learning by the slide show presentations and web pages, and its positive and negative influence on the student’s learning process, paying particular attention to the consequences on the level of attention within the classroom, and on the study outside the classroom. The study is performed by means of a qualitative analysis of student surveys conducted during the last 8 school Civil Engineering School at the Polytechnic University of Madrid. It presents some of the weaknesses of multimedia material, including the difficulties for students to study them, because of the many distractions they face and the need for incentives web pages offer, or the insignificant content and shallowness of the studies due to wrongly formulated presentations.
Resumo:
In the photovoltaic field, the back contact solar cells technology has appeared as an alternative to the traditional silicon modules. This new type of cells places both positive and negative contacts on the back side of the cells maximizing the exposed surface to the light and making easier the interconnection of the cells in the module. The Emitter Wrap-Through solar cell structure presents thousands of tiny holes to wrap the emitter from the front surface to the rear surface. These holes are made in a first step over the silicon wafers by means of a laser drilling process. This step is quite harmful from a mechanical point of view since holes act as stress concentrators leading to a reduction in the strength of these wafers. This paper presents the results of the strength characterization of drilled wafers. The study is carried out testing the samples with the ring on ring device. Finite Element models are developed to simulate the tests. The stress concentration factor of the drilled wafers under this load conditions is determined from the FE analysis. Moreover, the material strength is characterized fitting the fracture stress of the samples to a three-parameter Weibull cumulative distribution function. The parameters obtained are compared with the ones obtained in the analysis of a set of samples without holes to validate the method employed for the study of the strength of silicon drilled wafers.
Resumo:
There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career. This work analyses in depth the justification of such practical trips only on Applied Geology. This methodology could be usual in Study Plans of pure sciences career, Geology or Biology, but not in Civil Engineering like teaching method. It shows the criteria and methods of planning and the result which manifests itself in pupils. Therefore, work shows a methodology taking in account the engineering perspective, the practical point of view and the learning process inside students and their evaluation and, hence, their marks.