994 resultados para Chemical Communication
Resumo:
Aquest document se centra en els casos dels dos principals partits espanyols (PP i PSOE) i catalans (PSC i CDC) en el període immediatament després de les eleccions generals espanyoles de maig de 2008, quan aquests celebraren els seus congressos. En general, es poden distingir tres tipus d'actors: en primer lloc, els ciberactivistes que tracten d'obtenir el reconeixement formal de la seva activitat en els seus partits. Així com, els líders del partit que poden intentar promoure la presència del partit en el ciberespai, però que també poden romandre indecisos perquè no és clar l'impacte electoral a la xarxa del ciberactivisme. Finalment, alguns militants tradicionals (off-line) solen ser reticents al reconeixement del ciberactivisme perquè amenaça les recompenses previstes dins del partit. Aquest article mostra com els nostres partits varen respondre al desafiament del ciberactivisme i arriba a la conclusió que la seva situació electoral, mediada per la seva ideologia, estructura organitzativa i el tipus de militància, poden ajudar-nos a comprendre el grau diferent d'institucionalització en l'organització del partit.
Resumo:
Hazardous chemical products have to comply with, amongst others, the provisions of a correct classification of danger, labelling and compilation of the safety data sheets. The aim is to protect people's health and the environment from exposure to hazardous chemicals- especially the health and safety of direct users, professionals or not, and the general public, via environmental exposure. This publication is intended to contribute to the knowledge of the objectives and basic aspects of these legal provisions, and thereby increase their degree of compliance in Andalusia and other european regions. This Guide is directed toward those people who, in the development of their professional activities, are in one way or another in contact with dangerous chemical products.
Resumo:
Hazardous chemical products have to comply with, amongst others, the provisions of a correct classification of danger, labelling and compilation of the safety data sheets. The aim is to protect people's health and the environment from exposure to hazardous chemicals- especially the health and safety of direct users, professionals or not, and the general public, via environmental exposure. This publication is intended to contribute to the knowledge of the objectives and basic aspects of these legal provisions, and thereby increase their degree of compliance in Andalusia and other european regions. This Guide is directed toward those people who, in the development of their professional activities, are in one way or another in contact with dangerous chemical products.
Resumo:
CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Resumo:
The chemical composition and biological activities of 19 essential oils and seven of their major components were tested against free and intracellular forms of Leishmania chagasi and Trypanosoma cruzi parasites as well as Vero and THP-1 mammalian cell lines. The essential oils were obtained from different species of Lippia, a widely distributed genus of Colombian plants. They were extracted by microwave radiation-assisted hydro-distillation and characterised by GC-FID and GC-MS. The major components were geranial, neral, limonene, nerol, carvacrol, p-cymene, γ-terpinene, carvone and thymol. The essential oil of Lippia alba exhibited the highest activity against T. cruzi epimastigotes and intracellular amastigotes with an IC50 of 5.5 μg/mL and 12.2 μg/mL, respectively. The essential oil of Lippia origanoides had an IC50 of 4.4 μg/mL in L. chagasi promastigotes and exhibited no toxicity in mammalian cells. Thymol (IC50 3.2 ± 0.4 μg/mL) and S-carvone (IC50 6.1 ± 2.2 μg/mL), two of the major components of the active essential oils, were active on intracellular amastigotes of T. cruziinfected Vero cells, with a selective index greater than 10. None of the essential oils or major components tested in this study was active on amastigotes of L. chagasi infected THP-1 cells.